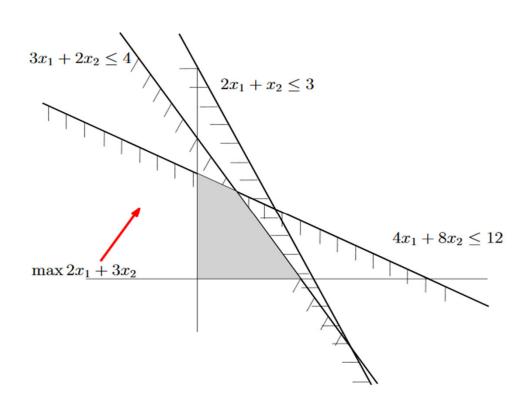
Lecture 15: Linear Programming III

David Woodruff
Carnegie Mellon University

Outline

- Linear Programming Duality
- Application to zero sum games

$$P = \max(2x_1 + 3x_2)$$
s.t. $4x_1 + 8x_2 \le 12$
 $2x_1 + x_2 \le 3$
 $3x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$



Since
$$2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$$
, we know OPT ≤ 12
Since $2x_1 + 3x_2 \le \frac{1}{2}(4x_1 + 8x_2) \le 6$, we know OPT ≤ 6
Since $2x_1 + 3x_2 \le \frac{1}{3}((4x_1 + 8x_2) + (2x_1 + x_2)) \le 5$, we know OPT ≤ 5

Duality

- We took non-negative linear combinations of the constraints
- How do we find the best upper bound on OPT this way?
- Let $y_1, y_2, y_3 \ge 0$ be the coefficients of our linear combination. Then,

$$4y_1 + 2y_2 + 3y_3 \ge 2$$
 $P = \max(2x_1 + 3x_2)$ $8y_1 + y_2 + 2y_3 \ge 3$ $x_1, y_2, y_3 \ge 0$ $x_1, y_2, y_3 \ge 0$ and we seek $\min(12y_1 + 3y_2 + 4y_3)$ $x_1, x_2 \ge 0$

Primal LP

Dual LP

$$P = \max(2x_1 + 3x_2)$$
 s.t. $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ and we satisfy $x_1, x_2 \ge 0$

$$4y_1 + 2y_2 + 3y_3 \ge 2$$
 $8y_1 + y_2 + 2y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$
and we seek $\min(12y_1 + 3y_2 + 4y_3)$

- If (x_1,x_2) is feasible for the primal, and (y_1,y_2,y_3) feasible for the dual, $2x_1+3x_2\leq 12y_1+3y_2+4y_3$
- If these are equal, we've found the optimal value for both LPs
- $(x_1, x_2) = (\frac{1}{2}, \frac{5}{4})$ and $(y_1, y_2, y_3) = (\frac{5}{16}, 0, \frac{1}{4})$ give the same value 4.75, so optimal

Dual LP

$$4y_1 + 2y_2 + 3y_3 \ge 2$$
 $8y_1 + y_2 + 2y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$
and we seek $\min(12y_1 + 3y_2 + 4y_3)$

• Let's try do the same thing to the dual:

•
$$12y_1 + 3y_2 + 4y_3 \ge 4y_1 + 2y_2 + 3y_2 \ge 2$$

•
$$12y_1 + 3y_2 + 4y_3 \ge 8y_1 + y_2 + 2y_3 \ge 3$$

•
$$12y_1 + 3y_2 + 4y_3 \ge \frac{2}{3}(4y_1 + 2y_2 + 3y_2) + (8y_1 + y_2 + 2y_3) \ge \frac{4}{3} + 3$$

Dual LP
$$4y_1 + 2y_2 + 3y_{13} \ge 2$$
 $8y_1 + y_2 + 2y_3 \ge 3$ $2x_1 + x_2 \le 12$ $x_1, y_2, y_3 \ge 0$ and we seek $\min(12y_1 + 3y_2 + 4y_3)$ $x_1, x_2 \ge 0$

- Take non-negative linear combination of the two constraints
- How do we find the best lower bound on OPT this way?
- Let $x_1, x_2 \ge 0$ be the coefficients of our linear combination. Then,
- $4x_1 + 8x_2 \le 12$, $2x_1 + x_2 \le 3$, $3x_1 + 2x_2 \le 4$, $x_1 \ge 0$, $x_2 \ge 0$ and we seek to maximize $2x_1 + 3x_2$

We got back the primal!

Non-Nice Constraints

$$P = \max(7x_1 - x_2 + 5x_3)$$
s.t. $x_1 + x_2 + 4x_3 \le 8$
 $3x_1 - x_2 + 2x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$

$$D = \min(8y_1 + 3y_2)$$
s.t. $y_1 + 3y_2 \ge 7$

$$y_1 - y_2 \ge -1$$

$$4y_1 + 2y_2 \ge 5$$

$$y_1 \ge 0, y_2 \le 0$$

Formal Definition of Duality

<u>Primal</u>

```
\begin{aligned} \text{Max } c^T x \\ \text{subject to } Ax & \leq b \\ x & \geq 0 \\ \hline \\ \underline{\text{Dual}} \\ \text{Min } b^T y \\ \text{subject to } A^T y & \geq c \\ y & \geq 0 \end{aligned}
```

- Dual of the dual is the primal!
- Can we get better upper/lower bounds by looking at more complicated combinations of the inequalities, not just linear combinations?

Weak Duality

<u>Primal</u>

Max $c^T x$ subject to $Ax \le b$ $x \ge 0$

Dual

Min b^Ty subject to $A^Ty \ge c$ $y \ge 0$

- (Weak Duality) If x is a feasible solution of the primal, and y is a feasible solution of the dual, then $c^Tx \leq b^Ty$
- Proof: Since $x \ge 0$ and $y \ge 0$, $c^T x \le y^T A x \le y^T b = b^T y$

Strong Duality

$\begin{array}{ll} & & & & & \\ \text{Primal} & & & & \\ \text{Max } c^Tx & & & \text{Min } b^Ty \\ \text{subject to } Ax \leq b & & \text{subject to } A^Ty \geq c \\ & & & & & \\ x \geq 0 & & & & \\ \end{array}$

• (Strong Duality) If primal is feasible and bounded (i.e., optimal value is not ∞), then dual is feasible and bounded. If x^* is optimal solution to the primal, and y^* is optimal solution to dual, then

$$c^{T}x^{*} = b^{T}y^{*}$$

• To prove x^* is optimal, I can give you y^* and you can check if x^* is feasible for the primal, y^* is feasible for the dual, and $c^Tx^* = b^Ty^*$

Consequences of Duality

$P \backslash D$	I	0	$oxed{U}$
I	?	?	?
O	?	?	?
U	?	?	?

I means infeasible
O means feasible and bounded
U means unbounded

Which combinations are possible?

Consequences of Duality

$P \backslash D$	I	O	$oxed{U}$
I	√	X	✓
O	X	√	X
U	√	X	X

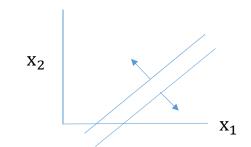
I means infeasible
O means feasible and bounded
U means unbounded

Check means possible X means impossible

Possible Scenarios

- Suppose primal is feasible and bounded
- By strong duality, dual is feasible and bounded
- If primal (maximization) is unbounded, by weak duality, $c^Tx \le b^Ty$, so no feasible dual solution e.g., $\max x_1$ subject to $x_1 \ge 1$ and $x_1 \ge 0$ dual will have $y_1 \le 0$ and $y_1 \ge 1$

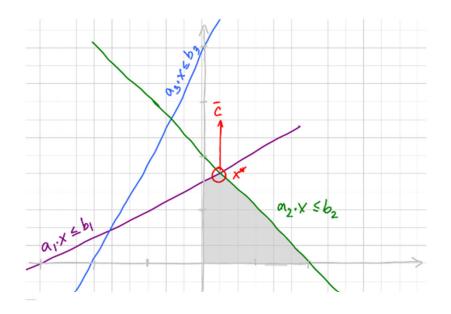
$P \setminus D$	I	O	U
I	✓	X	✓
O	X		X
$oxed{U}$	✓	X	X

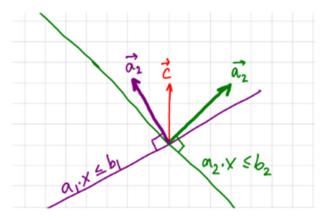


- Can primal and dual both be infeasible?
- Primal: max $2x_1 x_2$ subject to $x_1 x_2 \le 1$ and $-x_1 + x_2 \le -2$ and $x_1 \ge 0$, $x_2 \ge 0$
- Dual: $y_1 \ge 0$, $y_2 \ge 0$, and $y_1 y_2 \ge 2$ and $-y_1 + y_2 \ge -1$, and min $y_1 2y_2$
- Constraints are same for primal and dual, and both infeasible

Strong Duality Intuition

Suppose x^* satisfies $a_1x = b_1$ and $a_2x = b_2$





Strong Duality Intuition

For non-negative y₁ and y₂

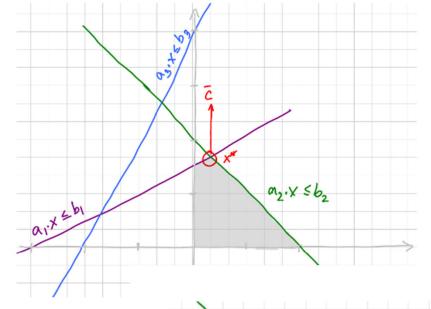
$$\mathbf{c} = y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2.$$

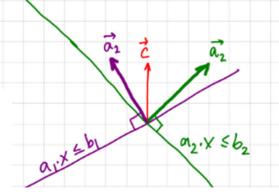
$$\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x}^* = (y_1 \, \mathbf{a}_1 + y_2 \, \mathbf{a}_2) \cdot \mathbf{x}^*$$

= $y_1(\mathbf{a}_1 \cdot \mathbf{x}^*) + y_2(\mathbf{a}_2 \cdot \mathbf{x}^*)$
= $y_1b_1 + y_2b_2$

Defining $y = (y_1, y_2, 0, ..., 0)$, we get

optimal value of primal = $\mathbf{c}^{\mathsf{T}}\mathbf{x}^* = \mathbf{b}^{\mathsf{T}}\mathbf{y} = \text{value of dual solution } \mathbf{y}$.





the y we found satisfies $\mathbf{c} = y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 = \sum_i y_i \mathbf{a}_i = A^T \mathbf{y}$, and hence y satisfies the dual constraints $\mathbf{y}^T A \ge \mathbf{c}^T$ by construction. But $\mathbf{b}^T \mathbf{y} \ge \mathbf{c}^T \mathbf{x}^*$ by weak duality, so y is optimal!

Duality in Zero-Sum Games

- R is an n x m row payoff matrix
- W.I.o.g. R has all non-negative entries
- Variables: $v, p_1, ..., p_n$
- Max v $\text{subject to } p_i \geq 0 \text{ for all rows i, } \sum_i p_i = 1 \text{ , } \sum_i p_i R_{i,j} \geq v \text{ for all columns j}$
- Replace $\sum_i p_i = 1$ with $\sum_i p_i \leq 1$.
- Include $v \ge 0$
- Write $\sum_i p_i R_{i,j} \ge v$ as $v \sum_i p_i R_{i,j} \le 0$

Duality in Zero-Sum Games

 $\max c^T x$ subject to $Ax \le b$ and $x \ge 0$

$$\mathbf{x} = \begin{bmatrix} v \\ p_1 \\ p_2 \\ \dots \\ p_n \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{bmatrix}, \text{ and } A = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix} -R^T$$

- Dual: min y^Tb subject to $y^TA \ge c^T$ and $y \ge 0$ for $y = (y_1, ..., y_{m+1})$
- Dual constraints say $y_1+\cdots+y_m\geq 1$ and $\sum_j y_j R_{ij}\leq y_{m+1}$ for all rows i
 - Since we're minimizing y_{m+1} and $R_{i,j}$ all non-negative, $y_1 + ... + y_m = 1$
- y_{m+1} is value to the row player and y_1, \ldots, y_m is column player's strategy
- Strong duality: $\max_{p} \min_{j} \sum_{i} p_{i} R_{ij} = \min_{y_{1},..,y_{m}} \max_{i} \sum_{j} y_{j} R_{ij}$