
15-451/651: Design & Analysis of Algorithms March 26, 2019
Lecture #17: Approximation Algorithms last changed: March 14, 2019

While we have good algorithms for many optimization problems, the previous lecture showed that
many others we’d like to solve are NP-hard. What do we do? Suppose we are given an NP-
complete problem to solve. Assuming P 6= NP, we can’t hope for a polynomial-time algorithm for
these problems. But can we

(a) get polynomial-time algorithms that always produce a “pretty good” solution? (A.k.a. ap-
proximation algorithms)

(b) get faster (though still exponential-time) algorithms than the näıve solutions?

Today we consider approaches to combat intractability for several problems. Specific topics in this
lecture include:

• 2-approximation (and better) for scheduling to minimize makespan.
• 2-approximation for vertex cover via greedy matchings.
• 2-approximation (and better) for traveling salesperson.
• Greedy O(log n) approximation for set-cover.
• A faster-than-O(nk) time algorithm for exact vertex cover when k is small. (optional)

1 Introduction

Given an NP-hard problem, we don’t hope for a fast algorithm that always gets the optimal
solution — if we had such a polynomial algorithm, we would be able to use it to solve everything
in NP (using the reductions we used to prove problems are NP-complete), and that would imply
that P = NP, something we expect is false. But we can’t just throw our hands in the air and say
“We can’t do anything!” Or even, “We can’t do anything other than the trivial solution!”. There
are (at least) two ways of being smarter.

• First approach: find a poly-time algorithm that guarantees to get at least a “pretty good”
solution? E.g., can we guarantee to find a solution that’s within 10% of optimal? If not that,
then how about within a factor of 2 of optimal? Or, anything non-trivial?

• Second approach: find a faster algorithm than the näıve one. There are a bunch of ideas that
you can use for this, often related to dynamic programming — today we’ll talk about one of
them.1

As seen in the last two lectures, the class of NP-complete problems are all equivalent in the sense
that a polynomial-time algorithm to solve any one of them would imply a polynomial-time algorithm
to solve all of them (and, moreover, to solve any problem in NP). However, the difficulty of getting
faster exact algorithms, or good approximations to these problems varies quite a bit. In this lecture
we will examine some important NP-complete problems and look at to what extent we can achieve
both goals above.

1You already saw an example: in Lecture II on Dynamic programming, we gave an algorithm for TSP that ran in
time O(n22n), which is much faster than the trivial O(n · n!) ≥ nn/2 time algorithm.

1

2 Scheduling Jobs to Minimize Load

Here’s a scheduling problem. You have m identical machines on which you want to schedule some
n jobs. Each job j ∈ {1, 2, . . . , n} has a processing time pj > 0. You want to partition the jobs
among the machines to minimize the load of the most-loaded machine. In other words, if Si is the
set of jobs assigned to machine i, define the makespan of the solution to be maxmachines i(

∑
j∈Si

pj).
You want to minimize the makespan of the solution you output.

Approach #1: Greedy. Pick any unassigned job, and assign it to the machine with the least
current load.

Theorem 1 The greedy approach outputs a solution with makespan at most 2 times the optimum.

Proof: Let us first get some bounds on the optimal value OPT . Clearly, the optimal makespan
cannot be lower than the average load 1

m

∑
j pj . And also, the optimal makespan must be at least

the largest job maxj pj .

Now look at our makespan. Suppose the most-loaded machine is i∗. Look at the last job we assigned
on i∗, call this job j∗. If the load on i∗ was L just before j∗ was assigned to it, the makespan of our
solution is L+ pj∗ . By the greedy rule, i∗ had the least load among all machines at this point, so
L must be at most 1

m

∑
j assigned before j∗ pj . Hence, also L ≤ 1

m

∑
j pj ≤ OPT . Also, pj∗ ≤ OPT .

So our solution has makespan L+ pj∗ ≤ 2OPT .

Being careful, we notice that L ≤ 1
m

∑
j 6=j∗ pj ≤ OPT − p∗j

m , and hence our makespan is at most

L+ pj∗ ≤ (2− 1
m)OPT , which is slightly better. �

Is this analysis tight? Sadly, yes. Suppose we have m(m − 1) jobs of size 1, and 1 job of size m,
and we schedule the small jobs before the large jobs. The greedy algorithm will spread the small
jobs equally over all the machines, and then the large job will stick out, giving a makespan of
(m − 1) + m, whereas the right thing to do is to spread the small jobs over m − 1 machines and
get a makespan of m. The gap is 2m−1

m = (2− 1
m), hence this analysis is tight.

Can we get a better algorithm? The bad example suggests one such algorithm.

Approach #2: Sorted Greedy. Pick the largest unassigned job, and assign it to the machine
with the least current load.

Theorem 2 The sorted greedy approach outputs a solution with makespan at most 1.5 times the
optimum.

Proof: Again, suppose the most-loaded machine is i∗, the last job assigned to it is j∗, and the load
on i∗ just before j∗ was assigned to it is L. So our makespan is L+ pj∗ .

Suppose L = 0, then we are optimal, since pj∗ ≤ OPT . So assume that L 6= 0, hence at least one
job was already on i∗ before j∗ was assigned. By the greediness of the algorithm, each machine
had at least one job on it before we assigned j∗. And by the sortedness property, each such job had
size at least pj∗ . So there are at least m+ 1 jobs of size at least pj∗—these m previous jobs and j∗

itself. Now by the pigeonhole principle, OPT is at least 2pj∗ . In other words, pj∗ ≤ OPT
2 .

Putting it all together, our makespan is L+ pj∗ ≤ OPT + OPT
2 = 1.5OPT . (And you can show a

slightly better bound of (1.5− 1
2m)OPT .) �

It is possible to show that the makespan of Sorted Greedy is at most 4
3OPT . (Try it!)

2

3 Vertex Cover

Recall that a vertex cover in a graph is a set of vertices such that every edge is incident to (touches)
at least one of them. The vertex cover problem is to find the smallest such set of vertices.

Definition 3 Vertex-Cover: Given a graph G, find the smallest set of vertices such that every
edge is incident to at least one of them. Decision problem: “Given G and integer k, does G contain
a vertex cover of size ≤ k?”

For instance, this problem is like asking: what is the fewest number of guards we need to place in
a museum in order to cover all the corridors.

Exercise: Find a vertex cover in the graphs above of size 3. Show that there is no vertex cover of size
2 in them.

Exercise: Find a vertex cover in the graph above of size 2. Show that there is no vertex cover of size
1 in this graph.

As we saw last time (via a reduction from Independent Set), this problem is NP-hard.

3.1 Poly-time Algorithms that Output Approximate Solutions

OK, we don’t expect to find the optimal solution in poly-time. However, any graph G we can get
within a factor of 2 (or better). That is, if the graph G has a vertex cover of size k∗, we can return
a vertex cover of size at most 2k∗.

Let’s start first, though, with some strategies that don’t work.

Strawman Alg #1: Pick an arbitrary vertex with at least one uncovered edge incident to it, put
it into the cover, and repeat.

What would be a bad example for this algorithm? [Answer: how about a star graph]

Strawman Alg #2: How about picking the vertex that covers the most uncovered edges. This
is very natural, but unfortunately it turns out this doesn’t work either, and it can produce a
solution Ω(log n) times larger than optimal.2

2The bad examples for this algorithm are a bit more complicated however. One such example is as follows. Create
a bipartite graph with a set SL of t nodes on the left, and then a collection of sets SR,1, SR,2, . . . of nodes on the
right, where set SR,i has bt/ic nodes in it. So, overall there are n = Θ(t log t) nodes. We now connect each set SR,i

to SL so that each node v ∈ SR,i has i neighbors in SL and no two vertices in SR,i share any neighbors in common
(we can do that since SR,i has at most t/i nodes). Now, the optimal vertex cover is simply the set SL of size t, but
this greedy algorithm might first choose SR,t then SR,t−1, and so on down to SR,1, finding a cover of total size n− t.
Of course, the fact that the bad cases are complicated means this algorithm might not be so bad in practice.

3

How can we get factor of 2? It turns out there are actually several ways. We will discuss here two
quite different algorithms. Interestingly, while we have several algorithms for achieving a factor of
2, nobody knows if it is possible to efficiently achieve a factor 1.99.

Algorithm 1: Pick an arbitrary edge. We know any vertex cover must have at least 1 endpoint
of it, so let’s take both endpoints. Then, throw out all edges covered and repeat. Keep going
until there are no uncovered edges left.

Theorem 4 The above algorithm is a factor 2 approximation to Vertex-Cover.

Proof: What Algorithm 1 finds in the end is a matching (a set of edges no two of which share
an endpoint) that is “maximal” (meaning that you can’t add any more edges to it and keep it a
matching). This means if we take both endpoints of those edges. we must have a vertex cover. In
particular, if the algorithm picked k edges, the vertex cover found has size 2k. But, any vertex cover
must have size at least k since it needs to have at least one endpoint of each of these edges, and
since these edges don’t touch, these are k different vertices. So the algorithm is a 2-approximation
as desired.

Here is now another 2-approximation algorithm for Vertex Cover:

Algorithm 2: First, solve a fractional version of the problem. Have a variable xi for each vertex
with constraint 0 ≤ xi ≤ 1. Think of xi = 1 as picking the vertex, and xi = 0 as not picking
it, and in-between as “partially picking it”. Then for each edge (i, j), add the constraint that
it should be covered in that we require xi + xj ≥ 1. Then our goal is to minimize

∑
i xi.

We can solve this using linear programming. This is called an “LP relaxation” because
any true vertex cover is a feasible solution, but we’ve made the problem easier by allowing
fractional solutions too. So, the value of the optimal solution now will be at least as good as
the smallest vertex cover, maybe even better (i.e., smaller), but it just might not be legal any
more. [Examples: triangle-graph and star-graph]

Now that we have a super-optimal fractional solution, we need to somehow convert that into
a legal integral solution. We can do that here by just picking each vertex i such that xi ≥ 1/2.
This step is called rounding of the linear program (which literally is what we are doing here
by rounding the fraction to the nearest integer — for other problems, the “rounding” step
might not be so simple).

Theorem 5 The above algorithm is a factor 2 approximation to Vertex-Cover.

Proof: Claim 1: the output of the algorithm is a legal vertex cover. Why? [get at least 1 endpt of
each edge]

Claim 2: The size of the vertex cover found is at most twice the size of the optimal vertex cover.
Why? Let OPTfrac be the value of the optimal fractional solution, and let OPTV C be the size of
the smallest vertex cover. First, as we noted above, OPTfrac ≤ OPTV C . Second, our solution has
cost at most 2 · OPTfrac since it’s no worse than doubling and rounding down. So, put together,
our solution has cost at most 2 ·OPTV C .

3.2 Hardness of Approximation

Interesting fact: nobody knows any algorithm with approximation ratio 1.9. Best known is 2 −
O(1/

√
log n), which is 2− o(1).

4

There are results showing that a good-enough approximation algorithm will end up showing that
P=NP. Clearly, a 1-approximation would find the exact vertex cover, and show this. H̊astad showed
that if you get a 7/6-approximation, you would prove P=NP. This 7/6 was improved to 1.361 by
Dinur and Safra. Beating 2− ε has been related to some other open problems (it is “unique games
hard”), but is not known to be NP-hard.

4 Set Cover

The Set-Cover problem is defined as follows:

Definition 6 Set-Cover: Given a domain X of n points, and m subsets S1, S2, . . . , Sm of these
points. Goal: find the fewest number of these subsets needed to cover all the points. The decision
problem also provides a number k and asks whether it is possible to cover all the points using k or
fewer sets.

Set-Cover is NP-Complete. However, there is a simple algorithm that gets an approximation
ratio of lnn (i.e., that finds a cover using at most a factor lnn more sets than the optimal solution).

Greedy Algorithm (Set-Cover): Pick the set that covers the most points. Throw out all the
points covered. Repeat.

What’s an example where this algorithm doesn’t find the best solution?

Theorem 7 If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
O(k lnn) sets.

Proof: Since the optimal solution uses k sets, there must some set that covers at least a 1/k
fraction of the points. The algorithm chooses the set that covers the most points, so the first set it
chooses covers at least that many. Therefore, after the first iteration of the algorithm, there are at
most n(1− 1/k) points left. Again, since the optimal solution uses k sets, there must some set that
covers at least a 1/k fraction of the remainder (if we got lucky we might have chosen one of the
sets used by the optimal solution and so there are actually k − 1 sets covering the remainder, but
we can’t count on that necessarily happening). So, again, since we choose the set that covers the
most points remaining, after the second iteration, there are at most n(1− 1/k)2 points left. More
generally, after t rounds, there are at most n(1 − 1/k)t points left. After t = k lnn rounds, there
are at most n(1− 1/k)k lnn < n(1/e)lnn = 1 points left, which means we must be done.3

Also, you can get a slightly better bound by using the fact that after k ln(n/k) rounds, there are
at most n(1/e)ln(n/k) = k points left, and (since each new set covers at least one point) you only
need to go k more steps. This gives the somewhat better bound of k ln(n/k) + k. So, we have:

Theorem 8 If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
k ln(n/k) + k sets.

For set cover, this may be about the best you can do. Dinur and Steurer (improving on results of
Feige) showed that if you get a (1 − ε) ln(n)-approximation algorithm for any constant ε > 0, you
will prove that P=NP.

3Notice how the above analysis is similar to the analysis we used of Edmonds-Karp #1.

5

5 Metric Traveling Salesperson (Optional)

The metric traveling salesperson (Metric TSP) problem asks you to find the shortest path to visit
n cities, each exactly once, returning to where you started. You are given distances dij between
any pair of cities i and j (assume these distances are given as a matrix D). The “metric” part of
the problem is that these distances are symmetric and obey the triangle inequality. This problem
is NP-complete (Exercise: try to prove this yourself).

Approximation Algorithm #1: MST. Treat D as the weighted adjacency matrix of a complete
graph. Compute the minimum spanning tree T of this graph. Visit the cities in order that they
would be output in a pre-order traversal of T . For example:

Theorem 9 This MST approach gives a 2-approximation to the Metric TSP problem.

Proof: Let cost(P) be the length of the path output by this algorithm, cost(T) be the weight of
the MST and cost(A∗) be the length of the optimum TSP path. We have cost(T) ≤ cost(A∗) since
the optimal tour can be turned into a a spanning tree (connected, visits every vertex, no cycles)
by deleting an edge. A full walk that traverses the tree in pre-order traversal going down and
then back up the edges (as in the dotted lines in the figure about) has total length 2cost(T). The
shortcuts (dashed edges) when you skip cities you have already visited only make the path shorter.
So: cost(P) ≤ 2cost(T) ≤ 2cost(A∗). �

Notice that we used the fact that the distances obey the triangle inequality when we claim that
the shortcuts only reduce the length of the path.

5.1 Christofides’ algorithm

We can improve on this algorithm by looking at what we did in a different way. What we did was:
find the MST T , and create a new graph G that contains 2 copies of each edge from T (that is,
G is a multigraph). We then found an Eulerian tour of G. We transform the Eulerian tour into a
TSP tour by skipping cities we’ve already visited (shortcutting).

We can generalize this idea to other “spanning Eulerian multigraphs”. A spanning Eulerian multi-
graph of D is a multigraph that (1) contains a single component with all of the cities of D,
(2) contains some number (≥ 0) of copies of the edges between cities, and (3) is Eulerian.

6

Theorem 10 If H is a spanning Eulerian multigraph of D and cost(H) is the cost of the Eulerian
tour on H, then we can efficiently find a TSP tour of cost ≤ cost(H).

Proof: Find the Eulerian tour on H (of cost(H)), turn it into a TSP tour via shortcuts of lower
cost. �

For the MST-based algorithm, we used the “double MST” as the spanning Eulerian multigraph
(SEM), but if we can find a lower cost SEM, we could potentially do better. That leads to:

Approximation Algorithm #2: Christofides. Compute the MST T of D. Compute a mini-
mum weight perfect matching M between the vertices of odd degree in T . Construct the spanning
Eulerian multigraph G = T ∪M (that is, G contains the edges from T and the edges from the
matching). Return the TSP tour constructed from shortcutting an Eulerian tour on G. 4

Theorem 11 Christofides gives a 3/2-approximation algorithm for Metric TSP.

Proof: We can always construct G: there are always an even number of odd-degree vertices in T .
(True for any undirected graph because

∑
v degree(v) = 2|E|).

G is a spanning Eulerian multigraph: it contains all the vertices. Vertices that had even degree in
T have even degree in G. Vertices that have odd degree in T have 1 more edge incident on them
(from the matching) so now they have even degree. Since all the vertices in G have even degree, G
is Eulerian.

Let cost(E) be the length of the Eulerian tour on G and cost(C) be the cost of the TSP tour
extracted from it by shortcutting. Note that cost(C) ≤ cost(E) = cost(T) + cost(M).

We have cost(T) ≤ cost(A∗) (same reason as before).

Let v1, . . . , vk be the odd degree vertices, listed in order that the appear in the optimal tour. Form
two matchings from these:

M1 = (v1, v2), (v3, v4), . . . , (vk−1, vk)

M2 = (v2, v3), (v4, v5), . . . , (vk, v1)

We then have cost(M1) + cost(M2) ≤ cost(A∗) since M1∪M2 is a shortcutting of the optimal tour.
Since our matching M is the least weight, we have:

2cost(M) ≤ cost(M1) + cost(M2) ≤ cost(A∗)

This gives us:

cost(C) ≤ cost(E) = cost(T) + cost(M) ≤ cost(A∗) + (1/2)cost(A∗) = (3/2)cost(A∗)

�

6 Faster Exact Algorithms for Vertex Cover? (Optional)

Let’s see if we can solve the vertex cover problem faster than the obvious solution. To solve the
decision version of the vertex cover problem, here’s the trivial algorithm taking about nk time.

4This algorithm was proposed in 1976 by Nicos Christofides, who was at Carnegie Mellon University at the time.
The result appeared as a technical report of the Graduate School of Industrial Administration (GSIA), which is now
part of the Tepper School of Business.

7

Iterate over all subsets S ⊆ V of size k.
If S is a vertex cover, output YES and stop.

output NO.

How can you do better? Here’s one cool way to do it:

Theorem 12 Given G = (V,E) and k ≤ n = |V |, we can output (in time poly(n)) another graph
H with at most 2k2 vertices, and an integer kH ≤ k such that:

(G, k) is a YES-instance ⇐⇒ (H, kH) is a YES-instance .

Since H is so much smaller, we can use the trivial algorithm above on (H, kH) to run in time

|V (H)|kH ≤ (2k2)k ≤ 2k(2 lg k+1).

Hence solve the problem on (G, k) in the time it takes to produce H (which is poly(n)), plus about
22k lg k time. Much faster than nk when k �

√
n.

It remains to prove Theorem 12.

Proof: Here’s a simple observation: suppose G has an isolated vertex v, i.e., there are no edges
hitting v. Then

(G, k) is a YES-instance ⇐⇒ (G− {v}, k) is a YES-instance .

The second observation: suppose G has a vertex v of degree at least k + 1. Then v must be in any
vertex cover of size k. Why? If not, these k + 1 edges incident to v would have to be covered by
their other endpoints, which would require k + 1 vertices. So

(G, k) is a YES-instance ⇐⇒ (G− {v}, k − 1) is a YES-instance .

(In this step, G− {v} removes these edges incident to v as well.)

And the final observation: if G has maximum degree k and has a vertex cover of size at most k,
G has at most k2 edges. Why? Each of the vertices in the cover can cover at most k edges (their
degree is at most k).

So now the construction of H is easy: start with G. Keep dropping isolated vertices (without
changing k), or dropping high-degree vertices (and decrementing k) until you have some graph G′

and parameter k′. By the first two observations,

(G, k) is a YES-instance ⇐⇒ (G′, k′) is a YES-instance .

Now either G′ has more than (k′)2 edges, then by the final observation (G′, k′) is a NO-instance,
so then let H be a single edge and kH = 0 (which is also a NO-instance.) Else return H = G′ and
kH = k′. Since H has (k′)2 ≤ k2 edges, it has at most 2k2 nodes.

Finally, the time to produce H? You can do all the above in linear time in G. �

8

