
15-451/651: Design & Analysis of Algorithms April 9, 2019
Lecture #20: Gradient Descent last changed: April 5, 2019

In this lecture, we will study the gradient descent framework. This is a very general procedure to
(approximately) minimize convex functions, and is applicable in many different settings. We use
it to give an online algorithm with guarantees like those of the multiplicative weights algorithms
from Lecture #19.1

1 The Basics

1.1 Norms and Inner Products

The inner product between two vectors x,y ∈ Rn is written as 〈x,y〉 =
∑

i xiyi. Recall that the
Euclidean norm of x = (x1, x2, . . . , xn) ∈ Rn is given by

‖x‖ =

√√√√ n∑
i=1

x2i =
√
〈x,x〉.

For any c ∈ R and x ∈ Rn, we get ‖cx‖ = |c| · ‖x‖, and also ‖x + y‖ ≤ ‖x‖+ ‖y‖. Moreover,

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x,y〉 (F1)

1.2 Convex Sets and Functions

Definition 1 A set K ⊆ Rn is said to be convex if(
λx + (1− λ)y

)
∈ K ∀x,y ∈ K, ∀λ ∈ [0, 1]

Definition 2 For a convex set K ⊆ Rn, a function f : K → R is said to be convex over K iff

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x,y ∈ Rn, ∀λ ∈ [0, 1]

Whenever K is not specified, assume K = Rn.

In the context of this lecture, we will always assume that the function f is differentiable. The
analog of the derivative in the multivariate case is the gradient ∇f , which is itself a function from
K → Rn defined as follows:

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
.

We assume that the gradient is well-defined at all points in K.2 Visually, if you draw the “level
sets” of points where the function f takes on the same value as at x, then the gradient ∇f(x) gives
you the tangent plane to this level set at point x.

Fact 3 A differentiable function f : K → R is convex iff ∀x,y ∈ K,

f(y) ≥ f(x) + 〈∇f(x),y − x〉 .

1

Figure 1: The blue line is function; the red line the tangent at x. Image from Nisheeth Vishnoi’s notes.

Geometrically, Fact 3 states that the function always lies above its tangent (see Fig 1). The right
side is a “linear approximation” to the convex function at the point x: this is like taking the
constant and linear terms in a Taylor-series expansion of f .3

Example: For the univariate function f(x) = x2, what is ∇f? Plot the curve f(y), and for some fixed
point x0, the line x2

0 + 〈∇f(x0), y − x0〉. Check that the above inequality holds; i.e., the curve stays
above the line for all y.

2 The Problems: Convex Minimization and Gradient Descent

There are two kinds of problems that we will concern ourself with:

1. Unconstrained Convex Minimization (UCM): Given a convex function f : Rn → R, find

min
x∈Rn

f(x).

2. Constrained Convex Minimization (CCM): Given a convex set K and a convex function
f : K → R, find

min
x∈K

f(x).

Observe that the second problem contains within in the problem of solving a linear program (in
that case the function f is linear, and the convex body is a polytope).

When we say “given a convex function f”, how is f specified? In this lecture, we will assume we
have access to both a “value oracle” that given a point x ∈ Rn will tell us the value of f(x), and
also a “gradient oracle” that will tell us the value of ∇f(x).

2.1 Characterizations of Optimality

A crucial property of convex functions is that f is convex implies that all local minima are also
global minima. This gives us a characterization of optimality for the unconstrained problem.

Fact 4 Given f : Rn → R, x∗ ∈ Rn is a global minimizer of f exactly when ∇f(x∗) = 0.

1More details on these topics can be found, e.g., in notes by Sebastian Bubeck, Elad Hazan, or Nisheeth Vishnoi.
Or these notes by Bansal and Gupta.

2Many of the ideas here extend to non-differentiable cases too, using the concept of a sub-gradient.
3There are other ways of saying that a function is convex, but these will suffice for the moment.

2

https://arxiv.org/abs/1405.4980
http://ocobook.cs.princeton.edu/OCObook.pdf
https://nisheethvishnoi.wordpress.com/convex-optimization/
https://arxiv.org/abs/1712.04581
https://en.wikipedia.org/wiki/Subderivative

Hence, solving ∇f(x) = 0 would enable us to compute the global minima exactly. Often, it may
not be possible to get a closed form for ∇f . Today we show an algorithm that iteratively gets close
to the optimal value.

For constrained minimization, the condition for optimality is slightly different:

Fact 5 Given f : K → R, x∗ ∈ K is a global minimizer of f exactly when for all y ∈ K,

〈∇f(x∗),y − x∗〉 ≥ 0.

Why does this make sense? First convince yourself that this makes sense in the 1-dimensional case,
when f is a univariate function. Then use that a multivariate f is convex iff its restriction to each line
is convex. The above definition is doing precisely that.

In this constrained case it is not clear how to “solve” for optimality, even if we have a closed form
expression for f : this is more complicated than solving for the gradient being zero. Thankfully,
we will see how to modify our solution for the unconstrained problem to also solve the constrained
problem.

3 Unconstrained Convex Minimization

The idea behind gradient descent is simple: the gradient tells us the direction in which the function
increases the most rapidly. So, to minimize f it is natural to move in the direction opposite to the
gradient. But how far should we move in this direction?

Figure 2: The yellow lines denote the level sets of the function f and the red walk denotes the steps of
gradient descent. (Picture from wikipedia.)

The basic gradient descent “framework” says:

Start with some point x0. At each step t = 1, 2, . . . , T − 1, set

xt+1 ← xt − ηt · ∇f(xt). (1)

return x̂ = 1
T

∑T−1
t=0 xt.

That’s the entire “framework”. In order to instantiate this framework and get a concrete algorithm,
we need to specify how large the step size ηt is, and how many steps T we need.

3

Figure 2 gives a pictorial view of this algorithm. Note that the steps might not head straight for
the minimizer, since each time you move in the direction of the negative gradient which may be
pointing elsewhere. But our point slowly approaches the minimizer x∗, at least in this picture. The
surprising part is that the convergence holds for all convex functions, we can show tight bounds on
how fast it converges. This is what we do next.

3.1 The Convergence Rate for Gradient Descent

The analysis we give works for all convex functions. Its guarantee will depend on two things:

• The distance of the starting point x0 from the optimal point x∗. Define D := ‖x0 − x∗‖.

• A bound G on the norm of the gradient at any point x ∈ Rn. Specifically, we want that
‖∇f(x)‖ ≤ G for all x ∈ Rn.4

Our main theorem for this lecture is:

Theorem 6 (Basic Gradient Descent) For any (differentiable) convex function f : Rn → R
and any starting point x0, if we set T =

(
GD
ε

)2
and ηt = η := D

G
√
T

, then

f(x̂)− f(x∗) ≤ ε.

Remember that G,D depend on both f and x0.

We’ll prove this theorem by the end of this lecture, but some discussion before we do so.

1. If you think of G,D as constants, it takes O(1
ε2

) steps to get within ε of the optimal value.
In other words, if we wanted to halve the error (make ε→ ε

2), the runtime would go up by a
factor of 4. (Halving the error is like getting one more bit of precision.)

2. Indeed, if we assume nothing else about the function f , we cannot hope for any better
guarantee than f(x̂) ≤ f(x∗) + ε after T = O(1ε)2 steps.

3. But if the functions are “nice” (e.g., strongly convex, or smooth), then you can improve the
runtime.

Indeed, if the functions are “well-conditioned” then we can even get the runtime to depend as
O(log 1

ε), in which case getting each additional bit of precision increases the runtime additively
only by O(1). This is the kind of guarantee that the Ellipsoid algorithm achieves!

3.1.1 Online Convex Optimization

The proof for Theorem 6 actually works in a much stronger online setting. Let’s state that result,
and the give one proof for both theorems!

For the online setting, each day you need to choose a point xt ∈ Rn, and the adversary chooses
a convex function ft : Rn → R, and your cost is ft(xt). Just like in Lecture #19, we want an

4This is a very strong requirement, but if in the case of constrainted convex minimization, we will require that
‖∇f(x)‖ ≤ G only for x ∈ K, which may be more reasonable.

4

https://en.wikipedia.org/wiki/Convex_function#Strongly_convex_functions
https://blogs.princeton.edu/imabandit/2013/03/28/smoothfunctions/

algorithm whose cost is not much more than that of the best fixed choice x∗ in hindsight. I.e., you
want that for any x∗ ∈ Rn,

1

T

T−1∑
t=0

(f(xt)− f(x∗))→ 0 as T →∞

Here’s how to solve this problem. We can use almost the same update rule as (1), with one slight
modification. The update rule is now taken with respect to gradient of the current function ft.

xt+1 ← xt − ηt · ∇ft(xt). (2)

Theorem 7 (Online Gradient Descent) For any (differentiable) convex function f : Rn → R
and any starting point x0, if we set ηt := η, then for any point x∗ ∈ Rn,

T−1∑
t=0

ft(xt) ≤
T−1∑
t=0

ft(x
∗) +

η

2
G2T +

1

2η
D2. (3)

where G is an upper bound on maxt ‖∇ft‖, and D := ‖x0 − x∗‖.

Suppose we think of D,G as constants for now, and η = ε, then the “regret” (the difference between
us and the best fixed solution x∗) is

O(εT) +O(1ε).

For multiplicative weights, we had this being at most O(εT) +O(lognε) (see Slide 13 of the notes),
and hence we are in the same ballpark. (A more careful analysis follows in a later section.)

3.1.2 The Proofs

We’ll prove two things now. We first prove Theorem 7. Then we show that Theorem 6 follows from
Theorem 7 using elementary properties of convexity.

Proof: (of Theorem 7) The proof is a short and sweet potential function argument. Define

Φt :=
‖xt − x∗‖2

2η
.

Note that Φ0 = 1
2ηD

2. We will show that

amortized cost ft(xt) + (Φt+1 − Φt) ≤ ft(x∗) +
η

2
G2. (4)

Summing this up over all times gives

T−1∑
t=0

ft(xt) + (ΦT − Φ0) ≤
T−1∑
t=0

ft(x
∗) +

η

2
G2T.

Now using that ΦT ≥ 0 and Φ0 = D2/(2η) completes the proof.

To prove (4), let’s calculate

Φt+1 − Φt =
1

2η

(
‖xt+1 − x∗‖2 − ‖xt − x∗‖2

) (F1)
=

1

2η

(
‖xt+1 − xt‖2 + 2〈xt+1 − xt,xt − x∗〉

)
=

1

2η

(
η2‖∇ft(xt)‖2 − 2η〈∇ft(xt),xt − x∗〉

)
≤ η

2
G2 − 〈∇ft(xt),xt − x∗〉. (5)

5

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15451-f15/www/lectures/lect1118.pdf#page3

Next we use the convexity of f (via Fact 3) to bound the difference

ft(xt)− ft(x∗) ≤ 〈∇ft(xt),xt − x∗〉 (6)

Summing up (5) and (6) means the inner-product term cancels, and gives us the amortized cost
bound (4), and hence proves Theorem 7. �

Now to prove Theorem 6 from Theorem 7, note that if ft = f for all times t, we can use convexity
to argue that

f(x̂) = f

(
1

T

T−1∑
t=0

xt

)
≤ 1

T

(
T−1∑
t=0

f(xt)

)
.

Bounding the sum using Theorem 7, we get

f(x̂) ≤ f(x∗) +
1

T

(
η

2
G2T +

1

2η
D2

)
= f(x∗) +

η

2
G2 +

1

2ηT
D2.

Now setting T = (GDε)2 and η = D
G
√
T

= ε
G2 means both the terms on the right equal ε/2. This

proves Theorem 6.

4 Constrained Convex Minimization

Having done the analysis for the unconstrained case, we get the constrained case almost for free.
The main difference is that the update step may take us outside K. So we just “project back into
K”. The algorithm is almost the same, let the blue parts highlight the changes.

Start with some point x0. At each step t = 1, 2, . . . , T − 1, set

yt+1 ← xt − ηt · ∇f(xt).

Let xt+1 be the point in K closest to yt+1.

return x̂ = 1
T

∑T−1
t=0 xt.

Now if we satisfy that ‖∇f(x)‖ ≤ G for all x ∈ K, the online optimization theorem remains exactly
the same.

Theorem 8 (Constrained Online Gradient Descent) For any convex body K ⊆ Rn, and se-
quence of (differentiable) convex functions ft : K → R and any starting point x0, if we set ηt := η,
then for any point x∗ ∈ Rn,

T−1∑
t=0

ft(xt) ≤
T−1∑
t=0

ft(x
∗) +

η

2
G2T +

1

2η
D2. (7)

where G is an upper bound on maxt maxx∈K ‖∇ft(x)‖, and D := ‖x0 − x∗‖.

Proof: The proof changes amazingly little — let’s see how. As before, we start to bound the
potential change.

Φt+1 − Φt =
1

2η

(
‖xt+1 − x∗‖2 − ‖xt − x∗‖2

)
(8)

6

Figure 3: The projection ensures that x∗ lies on the other side of the tangent hyperplane at xt+1, so the
angle is obtuse. This means the squared length of the “hypotenuse” is larger than the squared length
of either of the sides.

But now we claim that
‖xt+1 − x∗‖2 ≤ ‖yt+1 − x∗‖2.

Indeed, since xt+1 is the “projection” of yt+1 onto the convex set K. The proof is essentially by
picture (see Figure 3):

This means the changes die out almost immediately. Indeed,

Φt+1 − Φt ≤
1

2η

(
‖yt+1 − x∗‖2 − ‖xt − x∗‖2

)
=

1

2η

(
‖yt+1 − xt‖2 + 2〈yt+1 − xt,xt − x∗〉

)
=

1

2η

(
η2‖∇ft(xt)‖2 − 2η〈∇ft(xt),xt − x∗〉

)
≤ η

2
G2 − 〈∇ft(xt),xt − x∗〉. (9)

And the rest of the argument is the same as in Theorem 6. �

5 An(other) Algorithm for Prediction Using Experts (Optional)

Thinking of D,G as constants is clearly cheating. We now show details of a different randomized
algorithm for expert prediction. Suppose the convex body is

K = {x ∈ [0, 1]n |
∑
i

xi = 1},

the “probability simplex”. Suppose at each time the convex function is in fact linear:

ft(x) = 〈ct,x〉

for some vector ct ∈ [0, 1]n. Let’s see what the guarantees we get with these functions:

• For any x∗,x0 ∈ K, the distance D = ‖x∗ − x0‖ ≤ ‖x∗‖+ ‖x0‖ ≤ 2.

• Moreover, for any ft, the gradient is ∇ft(x) = ct, whose length is at most
√
n. Hence

‖∇ft(x)‖ ≤ G :=
√
n.

7

Plugging this back into (3) with η = ε
n , D = 2 and G =

√
n, the guarantee we get is

T−1∑
t=0

(
ft(xt)− ft(x∗)

)
=

T−1∑
t=0

(
〈ct,xt〉 − 〈ct,x∗〉

)
≤ O(εT + n

ε). (10)

Now we use this deterministic procedure to get a different (randomized) algorithm for the experts
problem from Lecture #19.

5.1 Algorithm for Expert Prediction

In the expert prediction problem, there are n experts. At each time we pick an expert (perhaps
randomly). Then the costs ct = (ct(1), ct(2), . . . , ct(n)) incurred by these n experts are revealed,
and our cost is the cost of the expert we chose.

Suppose we use the above gradient-descent based algorithm: at each time we get a vector xt ∈ K
from the algorithm, and we pick expert i with probability xt(i). Then

our total expected cost =

T−1∑
t=0

n∑
i=1

ct(i)xt(i) =

T−1∑
t=0

〈ct,xt〉 .

If the best expert is i?, the cost incurred by this best expert is

T−1∑
t=1

ct(i
∗) =

T−1∑
t=0

〈ct, ei∗〉 ,

where ei is the unit vector with 1 in the ith coordinate and zeros elsewhere.

Now combining this with (10), we get

our total expected cost − cost of the best expert =

T−1∑
t=0

〈ct,xt〉 −
T−1∑
t=0

〈ct, ei∗〉

≤ O(εT +
n

ε
).

Now you can relate this to multiplicative weights more precisely. Using Randomized Weighted
Majority from the previous lecture, this was at most O(εT) + O(lognε), so our dependence on the
number of experts is a bit worse. 5

5You can use a more nuanced version of Gradient descent called Mirror Descent to derive the same bounds as
Randomized Weighted Majority.

8

	The Basics
	Norms and Inner Products
	Convex Sets and Functions

	The Problems: Convex Minimization and Gradient Descent
	Characterizations of Optimality

	Unconstrained Convex Minimization
	The Convergence Rate for Gradient Descent
	Online Convex Optimization
	The Proofs

	Constrained Convex Minimization
	An(other) Algorithm for Prediction Using Experts (Optional)
	Algorithm for Expert Prediction

