Lecture 23: Graph Compression

David Woodruff
Carnegie Mellon University

- Spanners
 - Multiplicative
 - Additive

- You have an unweighted, undirected graph G = (V,E) on n vertices
- Given vertices u and v, want to find a shortest path between u and v
 - Routing packets on a network
 - GPS: Fastest way to get from source to destination
- Problem: G may be a huge graph, and you can't afford to store it

Shortest Path Queries

- G = (V,E) is an unweighted, undirected graph on n vertices
- |E| can be $\Theta(n^2)$, so want to "compress" G to fit in memory, but still want to answer shortest path queries
- Replace G with a subgraph H = (V, E')
 - Store H instead of G
 - Given query $d_G(u, v)$, respond with $d_H(u, v)$

- Suppose G = (V, E) is a clique
 - If $\{u,v\}$ not in H, what is $d_G(u,v)$ and what is $d_H(u,v)$?
- Can we find a small subgraph H to approximate $d_G(u, v)$ for all u,v?

- Spanners
 - Multiplicative
 - Additive

Spanners

- G = (V, E) is undirected, unweighted graph on n vertices
- $d_G(u, v)$ is shortest path distance from u to v
- A (k, b)-spanner of G is a subgraph H = (V, E') such that for all u,v in V $d_G(u,v) \le d_H(u,v) \le k \cdot d_G(u,v) + b$
- If b = 0, H is a multiplicative spanner
- If k = 1, H is an additive spanner
- Do there exist (k,b)-spanners H with small |E'|?

Application of Spanners

- Shortest path query $d_G(u, v)$
 - Replace G with a (k, b)-spanner H with |E'| edges
 - Output $d_H(u, v)$
 - Approximation: $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v) + b$
 - Space: O(|E'| + n) instead of O(|E| + n)
 - Time: O(|E'|+ n) instead of O(|E|+ n)
- Faster if $|E'| \ll |E|$, but have to account for the time to create H

- Motivating Questions
- Spanners
 - Multiplicative
 - Additive

Multiplicative Spanners

- A (k, b)-spanner of G is a subgraph H = (V, E') such that for all u,v in V $d_G(u,v) \leq d_H(u,v) \leq k \cdot d_G(u,v) + b$
- If b = 0, then $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v)$ for all u,v in V
 - H = (V, E') is a k-multiplicative spanner
 - How small can |E'| be?
- If $d_G(u, v) = 1$, then $d_H(u, v) \le k$
- Conversely, if $d_H(u,v) \le k$ for all edges $\{u,v\}$ of G, then for any vertices $u',v' \in V$, $d_H(u',v') \le k \cdot d_G(u',v')$
- To construct H, just need for all edges $\{u,v\}$ in E, $d_H(u,v) \le k$

Greedy Algorithm for Multiplicative Spanners

- Let's build H = (V, E') by walking through the edges of G
- Initialize H = (V, Ø)
 - For each edge e in G
 - If _____, then include e in H

- 2

- That's the algorithm! What should ______ be?
 - "If e doesn't form a cycle of length at most k+1 with the edges you've already included"
- Why is this correct?
 - For each edge not included, there's a path of length at most k between its endpoints
- How many edges does H have?

Bounding the Number of Edges in H

- H doesn't have a cycle of length at most k+1. Why?
- Minimum cycle length is called the girth
- What's the maximum number of edges in a graph with girth at least k+2?
 - What if k = 2?
 - A complete bipartite graph has $\Omega(n^2)$ edges, and girth 4
 - *What if* k = 3?
 - At most $O(n^{\frac{3}{2}})$ edges!
 - For k=2t or k=2t-1 for an integer t, at most $O(n^{1+\frac{1}{t}})$ edges, so H is tiny!

Bounding the Number of Edges in H

- Theorem: for k=2t or k=2t-1, a graph with girth at least k+2 has $O(n^{1+\frac{1}{t}})$ edges
- Lemma: let \overline{d} = 2m/n be the average degree in a graph G with m edges and n nodes. There is a non-empty subgraph G' of G with minimum degree $\overline{d}/2$
- Proof: Initialize $V_0 = V$ and $E_0 = E$
 - i = 0
 - While there is a vertex v of degree at most $|E_i|/|V_i|$,
 - $i \leftarrow i + 1$
 - $V_i \leftarrow V_{i-1} \setminus \{v\}$
 - $E_i \leftarrow E_{i-1} \setminus \{\{v, w\} \text{ for all neighbors } w \text{ of } v\}$
 - Output $G' = (V_i, E_i)$
 - G' is non-empty because $\frac{|E_i|}{|V_i|} \ge \frac{|E_{i-1}|}{|V_{i-1}|} \ge \cdots \ge \frac{|E|}{|V|} = \frac{m}{n} > 0$

For $t \le \frac{x}{y}$ we have:

$$\frac{x-t}{y-1} \ge \frac{x-\frac{x}{y}}{y-1} = \frac{x\left(1-\frac{1}{y}\right)}{y\left(1-\frac{1}{y}\right)} = \frac{x}{y}$$

Bounding the Number of Edges in H

• Theorem: for k = 2t or k=2t-1, a graph with girth at least k+2 has $O(n^{1+\frac{1}{t}})$ edges

- Proof:
 - By lemma, a graph G has a non-empty subgraph G' with min degree d/2
 - Grow a breadth-first-search (BFS) tree from a node v ∈ G'
 - G' has girth k+2
 - At level t in the BFS tree, there are at least $\left(\frac{\overline{d}}{2}-1\right)^t$ distinct nodes
 - $\left(\frac{\overline{d}}{2}-1\right)^t \le n$, so $\left(\frac{m}{n}-1\right)^t \le n$, and solving gives $m \le n+n^{1+\frac{1}{t}}$

Can we do Better?

• Girth conjecture: for k = 2t or k=2t-1, there are graphs with girth k+2 and $\Omega(n^{1+\frac{1}{t}})$ edges

- Implies any k-multiplicative spanner has $\Omega(n^{1+\frac{1}{t}})$ edges. Why?
- If we delete any edge {u,v} in G, the distance from u to v increases from 1 to k+1
- Only k-spanner of G is G itself
- Girth conjecture true for k = 1, 2, 3, 5

Where are We?

- Can find a (2t-1)-spanner with $O(n^{1+\frac{1}{t}})$ edges
- ullet Can approximate $d_G(u,v)$ for any u,v up to a multiplicative factor 2t-1
- Don't store G, just store H. Only $O(|E'|) = O(n^{1+\frac{1}{t}})$ instead of $O(n^2)$ edges
- Time to compute $d_H(u, v)$, given H, is $O(|E'|) = O(n^{1+\frac{1}{t}})$
 - Faster than the $O(n^2)$ time to query a dense graph G
 - Greedy algorithm to find H is slow, but can find H in O(|E|+n) time

- Spanners
 - Multiplicative
 - Additive

Additive Spanners

- A (k, b)-spanner of G is a subgraph H = (V, E') such that for all u,v in V $d_G(u,v) \leq d_H(u,v) \leq k \cdot d_G(u,v) + b$
- If k = 1, then $d_G(u, v) \le d_H(u, v) \le d_G(u, v) + b$ for all u,v in V
 - H = (V, E') is a b-additive spanner
 - How small can |E'| be?
- For multiplicative spanners, sufficient to show for all edges $\{u,v\}$ in G, $d_H(u,v) \le k$
 - Insufficient for additive spanners to show $d_H(u,v) \le b+1$ for all edges $\{u,v\}$ in G
- Would you believe: there is a 2-additive spanner with $O(n^{3/2} \log n)$ edges?

Additive Spanner Algorithm

- The algorithm has two parts
- (1) Include in H all edges incident to vertices of degree at most \sqrt{n} at most $n^{3/2}$ edges (why?)
- (2) Randomly sample a set S of $2\sqrt{n}\cdot ln\, n$ vertices and include a BFS tree rooted at each vertex in S, in H
 - at most $2n^{3/2}$ In n edges (why?)

H has $O(n^{\frac{3}{2}} \log n)$ edges. Why is it a 2-additive spanner?

- Consider a shortest path P from u to v in G
- If all nodes on P have degree $\leq \sqrt{n}$, then all edges in P are included in the spanner H
- Otherwise consider the first edge {c,d} in P, but not in H
 - c and d have degree at least \sqrt{n}
- Since we randomly sample a set S of size $2\sqrt{n} \cdot \ln n$, with high probability, we sample a neighbor e of c (probability we don't sample a neighbor of c at most $\left(1-\frac{\sqrt{n}}{n}\right)^{2\sqrt{n}\ln n} \leq \frac{1}{n^2}$)

- For each of our sampled vertices in S, we grew a BFS tree
- Let T_e be the BFS tree rooted at e included in H
- Let Q be the path from e to v in T_e
- Consider the path P' in H which follows P from u to c, then traverses edge {c, e}, then follows Q to v. *How long is P'?*

- Consider the path P' in H which follows P from u to c, then traverses edge {c, e}, then follows Q to v. How long is P'?
- Q is a shortest path from e to v in G!
- $d_Q(e, v) \le 1 + d_P(c, v)$
- $d_{P'}(u, v) = d_P(u, c) + 1 + d_Q(e, v) \le d_P(u, c) + d_P(c, v) + 2 = d_P(u, v) + 2$

Additive Spanner Notes

- Can find a 2-additive spanner with $O(n^{3/2} \log n)$ edges
 - Can get $O(n^{3/2})$ edges
- Can find a 4-additive spanner with $n^{7/5}$ poly(log n) edges
- Can find a 6-additive spanner with $O(n^{4/3})$ edges
- For any constant C > 0, any C-additive spanner requires $\Omega(n^{4/3})$ edges