
15-451/651: Design & Analysis of Algorithms April 18, 2019
Lecture #22: Nearest Neighbor Search last changed: April 30, 2019

In this lecture we will study the Nearest Neighbor Search problem. The input to the problem is a
set of points P. Given a query point q, the goal is to find the point in the set P that is closest to
this query point. Naively, this requires O(n) comparisons, since we have to compare q to each point
in P. In the setting where the number of points is really large, it is not computationally feasible
to use the brute-force algorithm. Therefore, our goal is to preprocess the input and create a data
structure that can quickly answer queries.

The Nearest Neighbor Search problem has a rich history and numerous applications1. It is an
algorithmic primitive for finding all similar pairs, solving clustering problems on large datasets,
closest pair problems in computational geometry, and is used in recommendation systems, spell-
checkers, and more.

1 Nearest Neighbor Search

Formally, the nearest neighbor problem is defined as follows:

Definition 1 (Nearest Neighbor Search Problem) Given a set of input points P = {p1, p2, . . . pn}
such that each pi ∈ Rd, and a query point q ∈ Rd, find point

p∗ = arg min
pi∈P

d(pi, q)

i.e. the closest point to q in the set P.

q

p∗

Here d(x, y) is the distance between x, y ∈ Rd; you can think of the Euclidean distance ‖x− y‖2 =√∑d
i=1(xi − yi)2, or the Manhattan “taxicab” distance ‖x − y‖1 =

∑d
i=1 |xi − yi|, but you can

define other distances too. E.g., we will talk about the Hamming distance later in the lecture.

However, trying to solve the Nearest Neighbor Search problem exactly for high-dimensional data is
a challenging task, and known algorithms have an exponential dependence on the dimension! Such
methods are not scalable in terms of dimension, a negative result which is sometimes called the
“curse of dimensionality”. Therefore, we relax our goal to finding approximate nearest neighbors.
In this approximate version of the problem we instead want to find a point pi ∈ P such that

d(pi, q) ≤ c · d(p∗, q),

where c > 1 is the “approximation” constant. Here is one formalization:

1See more at https://en.wikipedia.org/wiki/Nearest_neighbor_search

1

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Nearest_neighbor_search

Definition 2 (c-Approximate r-Near Neighbor) Given a point set P = {p1, p2, . . . pn} and a
query point q ∈ Rd such that

min
pi∈P

d(pi, q) ≤ r,

output any point pj ∈ P such that
d(pj , q) ≤ cr.

In other words, if there exists a point pj within distance r of the query point q, output any point pi
that is within distance cr of q. (If there is no such point within r of the query q, we are allowed to
return anything we want.)

q
r

cr

Figure 1: In c-Approximate r-Near Neighbor, if the smaller ball of radius r is non-empty, we must
output some point within the larger ball of radius cr.

In fact, near neighbor searching is really a two-stage problem. In the first stage, we get the set
P and process it to build a data structure. We worry about how much space this data structure
uses. (Since we imagine building the data structure once and then doing tons of queries, we won’t
worry too much about the time to do this processing, at least for today.) In the second stage, we
get query q, and we want the query time to be small. Please keep these two goals

(a) small space for the data structure, and
(b) small query time

in mind for the rest of the lecture.

1.1 Two Strawman Solutions

At a high level, we want to design a function W : Rd → {0, 1}k such that given W (p1) and W (p2)
we can distinguish between p1 and p2 being close, i.e. d(p1, p2) ≤ r, or p1 and p2 being far, i.e.
d(p1, p2) > cr. Additionally, we want k to be small in order to store the data structure in small

space. For concreteness, let c = 1 + ε and k = O
(
log(n)
ε2

)
for some ε > 0.

We note that we do not yet explicitly describe what W is. We defer the construction of W to the
next section. Assuming we have access to a W that satisfies the above properties, we can construct
a data structure for the c-Approximate r-Near Neighbor problem. Note, we can think of W as a
n× k matrix. The first strategy we consider is a linear scan.

Linear Scan.
1. For all pi ∈ P, precompute W (pi).
2. Given a query point q, compute W (q).
3. For all pi ∈ P, compare W (pi) and W (q).

2

Observe, we picked W such that using W (p1) and W (p2), we can distinguish if d(p1, p2) ≤ r or
d(p1, p2) > cr. Therefore, we can solve c-Approximate r-Near Neighbor using the Linear Scan algo-

rithm. We observe that the space complexity and query time of the above algorithm is O
(
n log(n)
ε2

)
,

which is nearly linear in the input size. While we are okay with nearly linear space, we would want
faster query time. This brings us to our next strategy called exhaustive storage.

Exhaustive Storage.
1. For each bit string σ ∈ {0, 1}k, construct a table A such that

A[σ] = {pi ∈ P | d(W (pi), σ) ≤ (1 + ε)r}

i.e. A[σ] stores the set of point pi that are close to σ after applying W to pi.
2. On query q, output any point in the set A[W (q)].

First, we observe that the query time for the above algorithm is O
(
d log(n)
ε2

)
, which is the time to

compute W (q). We now have a query time that is independent of n! Next, we observe that our
space complexity is O(2k) = nO(1/ε2) which is significantly larger than the Linear Scan approach.
We show how to obtain the best of both worlds, i.e. near-linear space complexity and sub-linear
query time.

2 Locality Sensitive Hashing

Next, we introduce an important algorithmic primitive in the design of Nearest Neighbor algorithms
called Locality Sensitive Hashing or LSH.

Definition 3 (Locality Sensitive Hashing (informal)) A locality sensitive hash function is a
random hash function h : Rd → {0, 1}k (i.e., h drawn from a family H) such that

1. If d(q, p) ≤ r, then Pr[h(q) = h(p)] = P1 is “not-so-small”, i.e. if p close to q, h(q) and h(p)
collide with higher probability.

2. If d(q, p) > cr then Pr[h(q) = h(p)] = P2 is “small”, i.e. if q is far from p, h(q) and h(p)
collide with lower probability.

We will specify later what P1 being “small” and P2 being “not-so-small” actually mean. For now,
P1 > P2 and we associate the following parameter with H to characterize this gap:

ρ =
log(1/P1)

log(1/P2)
. (1)

Observe that since P1 > P2, we have ρ < 1.

If we could construct a locality sensitive hash function h such that, simultaneously, P1 was ”large”
and P2 was ”small”, then we could simply compute the hash table of P, A. Then on query q,
simply compute A[h(q)] and we would be done. Unfortunately, it is known that it is impossible to
have P1 high and P2 low simultaneously. Therefore, instead of using just one hash function for the
entire input, we use L = nρ hash functions for independent h1, . . . , hL ∈ H. (We will justify this

choice of L later.) Note, since ρ = log 1/P1

log 1/P2
< 1, the number of hash functions used is nρ < n.

3

2.1 LSH for Hamming Space

Next, we construct a LSH for Hamming space, where the points lie in the Boolean cube {0, 1}d,
and the distance between two d-bit vectors x and y is given by the number of coordinates on which
they differ. Formally, the Hamming distance metric is given by Ham(x, y) := |{xi 6= yi}| where
x, y ∈ {0, 1}d and xi denotes the i-th coordinate of x. The random hash function g : {0, 1}d →
{0, 1}k is very simple:

Choose k random positions (independently and uniformly, with replacement) from the
input vector, and output the bits at those positions.

Formally, the hash family H := {g : {0, 1}d → {0, 1}k}, is defined as follows. For p ∈ {0, 1}d, let

g(p) := (h1(p), h2(p), . . . , hk(p)),

where
hi(p) := pj for uniformly random coordinate j ∈ [d].

So g(p) just keeps k random coordinates of the point p. Since we choose the coordinates indepen-
dently, the probability of a collision is

Pr[g(p) = g(q)] =
k∏
i=1

Pr[hi(p) = hi(q)].

So if we can show that a single hash function hi has collision with probability P , the collision
probability for g is P k, since we have to collide on all k copies.

Next, we show that the parameter ρ (which was defined in (1)) is identical for the hash functions
g and h, and is approximately 1/c. (Recall that c was the approximation factor.)

Fact 4 ρg = ρh

Proof: Some useful notation first. If d(q, p) ≤ r, define Pr[h(q) = h(p)] = P1,h, and if d(q, p) > cr,
Pr[h(q) = h(p)] = P2,h. Similarly, if d(q, p) ≤ r, define Pr[g(q) = g(p)] = P1,g else if d(q, p) > cr,
Pr[g(q) = g(p)] = P2,g. Then observe,

Pr[g(p) = g(q)] =
k∏
i=1

Pr[hi(p) = hi(q)] =⇒
{
P1,g = P k1,h
P2,g = P k2,h

since g consists of k independent copies of h. Then,

ρg =
log 1/P1,g

log 1/P2,g
=

log 1/P k1,h

log 1/P k2,h
=
k log 1/P1,h

k log 1/P2,h
= ρh

�

We then estimate the value of the parameter ρg.

Claim 5 ρ ≈ 1
c .

4

Proof: Observe that for p, q ∈ {0, 1}d, there are Ham(p, q) locations where p and q differ, so

∀i, Pr[hi(p) = hi(q)] = 1− Ham(p, q)

d
.

For simplicity we assume r � d. This assumption is justified since we can always embed in a higher
dimension, and the analysis goes through without the following approximation.

Consider the case where Ham(p, q) ≤ r. Then,

∀i, Pr[hi(p) = hi(q)] = 1− Ham(p, q)

d
≥ 1− r

d
= P1,h

Similarly, consider the case where Ham(p, q) > cr. We have,

∀i, Pr[hi(p) = hi(q)] = 1− Ham(p, q)

d
≤ 1− cr

d
= P2,h

Using a Taylor series approximation, ex = 1+x+ x2

2! +· · · . So, up to an additive error of O((cr/d)2):

P1,h = 1− r

d
≈ e−r/d

P2,h = 1− cr

d
≈ e−cr/d

This implies

ρg =
log 1/P1,h

log 1/P2,h
≈ r/d

cr/d
=

1

c
.

�

2.2 LSH for Nearest Neighbor Search

We now present an algorithm for the c-approximate r-near neighbor problem in Hamming Space,
via the above LSH construction. We will use the technique outlined earlier. In particular, we show
how to use the Locality Sensitive Hash function to obtain near-linear space complexity and sub-
linear query time. Observe, this beats the Linear Scan and Exhaustive Search algorithms presented
in Subsection 1.1. Note, here we should think of W to be the LSH function.

Data Structure: Given data points P

1. Allocate L hash tables, A1, . . . , AL each with a fresh Hamming LSH gi for i ∈ [l].

2. Hash all points in P into tables A1, . . . , AL.

Query: Given query q,

1. Compute g1(q), . . . , gL(q).

2. Check each table A1[g1(q)], . . . , AL[gL(q)] for collisions.

3. For each collision p ∈ P under gi, check if d(p, q) ≤ cr. If so, output p. If none found, FAIL.

Note that we have to show the following properties:

5

1. (Space bound) The size of the data structures is O(nL log n).

2. (Query time bound) The expected time to do query on some q is O(Ld)� O(nd).

3. (Correctness) On any q, if there exists a point p∗ ∈ P with d(p, q) ≤ r, then we output some
p ∈ P with d(p, q) ≤ cr with probability at least 1/2.

But first, let us choose the parameters L and k; these will be chosen to ensure the above properties.

2.2.1 Setting the Parameters L and k

Recall, for each hash table, we have a success probability of P1,g = P k1,h. Since we have L tables,

and we are hoping for a success probability of at least 0.5, we set L = O(1/P k1,h). Also recall

that the probability that we have a collision when p, q are far is P2,g = P k2,h. We pick k such that

P k2,h = 1
n (for reasons described in Subsection 2.2.2). Therefore, k = log(n)

log(1/P2,h)
.

Observe, for the above choices of L and k, we have

P1,g = Pr[g(p) = g(q) | d(p, q) ≤ r]
≥ P k1,h

= P

log(n)
log(1/P2,h)

1,h

= n
− log(1/P1,h)

log(1/P2,h)

= n−ρ

(2)

and

P2,g = Pr[g(p) = g(q) | d(p, q) ≥ cr]
≤ P k2,h

=
1

n

(3)

2.2.2 Analysis

Space Usage and Expected Query Time. We store L tables and for each table we hash the
entire input set P. Now each hash table could have up to 2k buckets. However, it can only have
n non-empty buckets, and we don’t want to spend a lot of memory storing empty buckets. To get
around this, we can hash the non-empty buckets to locations in another hash table H i of length
n using a hash function hi from a universal family. Then, when looking up a hash bucket gi(q)
given a query q and the i-th original table, we can additionally compute hi(gi(q)) to look at the
appropriate entry in H i. This entry will contain all the points p for which gi(p) = gi(q) but it may
also contain additional points. However, the expected number of additional points is O(1), since
h is drawn from a universal family. Also, in each entry of H, we do not need to store the actual
points p ∈ {0, 1}d that hash there, but rather we can store the identity of the point, i.e., if our i-th
input point hashes to a given entry in H i, we just store the index i. We also store our original
ordered list of n points in {0, 1}d. Then when we read the index i, we look up the i-th point in our
original list. Thus, the total memory is O(L · n · log n+ n · d) = O(n1+ρ log(n) + nd) bits.

6

For the expected query time, observe that we compute gi(q) ∈ {0, 1}k, which requires O(k) time.
Repeating this for all i ∈ [L] contributes O(Lk) time. Next, we need to check for false positives.
Each false positive requires O(d) time to compute. Recall, by Equation 3, the probability that two
far points collide is P2,g = 1

n . In expectation, n · 1n = 1 points collide in each of the L tables, and we
have an additional O(1) points which may collide under hi, and so we have to check an expected
O(L) points for false positives, contributing a running time of O(Ld). Therefore, we have a total
expected query time of O(Ld+ Lk) = O(nρ(k + d)). Note that we would never need to read more
than d entries to determine gi(q) because there are at most d coordinates to sample (even if k > d,
we can still determine which bucket to examine in O(d) time), so this gives O(nρd) total expected
query time.

Correctness. To argue correctness, we show that if there exists a point p∗ such that d(q, p∗) ≤ r,
then the probability the above algorithm fails is at most 1/2. Observe, the algorithm fails if p∗ is
not in {A1[g1(q)], A2[g2(q)], . . . AL[gL(q)]}. Therefore,

Pr [p∗ /∈ {A1[g1(q)], A2[g2(q)], . . . AL[gL(q)]}] =

L∏
i=1

Pr[gi(p
∗) 6= gi(q)]

≤
(

1− 1

nρ

)L
=

(
1− 1

nρ

)nρ
≤ 1

e

where the second inequality follows from Equation 2 and the third follows from our choice of L.
Thus, we obtain the following theorem :

Theorem 6 Given P = {p1, p2, . . . pn} ∈ {0, 1}n, equipped with the Hamming metric, there exists
an algorithm to preprocess the points and obtain the following guarantees:

1. (Space bound) The size of the data structures is O(n1+ρ log(n) + nd) bits.

2. (Query time bound) The expected time to do query on some q is O(nρd).

3. (Correctness) On any q, if there exists a point p∗ ∈ P with d(p, q) ≤ r, then we output some
p ∈ P with d(p, q) ≤ cr with probability at least 1/2.

3 Linear Sketching and CountSketch

Here are the main points about linear sketching:

1. We want to keep track of some vector xt ∈ Rn that is changing over time. Each time some
update ∆t arrives, and then xt+1 ← xt + ∆t.

2. A (linear) sketch is a short fat matrix S : Rn → Rk where think of k � n. So instead of
maintaining xt ∈ Rn explicitly, we maintain the sketch Sxt ∈ Rk.

3. The advantage of this linear sketch is that if we know yt := Sxt, then

yt+1 = Sxt+1 = S(xt + ∆t) = Sxt + S∆t = yt + S∆t.

And if we can compute the sketch S∆t of the “update” vector ∆t quickly and in little space,
we’re all set. That’s what we will do.

7

3.1 Maintaining the Euclidean norm of a vector via CountSketch

1. Want to maintain some info so that we can answer question: what is ‖xt‖2? I.e., want to
output some estimate Z such that Z ∈ (1± ε)‖xt‖2

2. We maintain two hash functions:

(a) One maps coordinates of x into k bins: i.e., h : [n]→ [k], it is a 2-wise independent hash
function.

(b) The other maps each coordinate into random bits: σ : [n] → {−1, 1}, which is 4-wise
independent hash function.

3. This gives a sketch matrix S ∈ {−1, 1}k×n, where the ith column has a single non-zero entry
in the h(i)th row. This entry has value σ(i).

4. We never write down this matrix S. Indeed, suppose xt+1 ← xt + (0, . . . , 0, a, 0, . . . , 0)ᵀ,
where the change a is in the ith coordinate. Then to compute Sxt+1 from Sxt, we just add in
S(0, . . . , 0, a, 0, . . . , 0)ᵀ to Sxt. Which is the same as adding in a ·σ(i) to the h(i)th coordinate
of Sxt. This can be done in constant time (two hash function evals, O(1) arithmetic ops).

5. Now we claim that (Sx)2 is a good estimate of ‖x‖2. Why? First, let’s consider the expecta-
tion E[(Sx)2].

E[(Sx)2] = E

 k∑
j=1

∑
i∈[n]

δ(h(i) = j)σ(i)xi

2
= E

 k∑
j=1

∑
i,i′∈[n]

δ(h(i) = j) · δ(h(i′) = j) · σ(i) xi σ(i′) xi′


=

k∑
j=1

∑
i,i′∈[n]

E[δ(h(i) = j) · δ(h(i′) = j)] · E[σ(i)σ(i′)] xi xi′

=
k∑
j=1

∑
i,i′∈[n]

Pr[h(i) = j) ∧ h(i′) = j] · E[σ(i)σ(i′)] xi xi′

But E[σi] = 0, since it takes on value −1 and 1 with equal probability. And since the hash
function σ is pairwise independent, the expectation will be zero except when i = i′, when it
is 1! So we get

=

k∑
j=1

∑
i∈[n]

Pr[h(i) = j)] · x2i

8

And finally, since Pr[h(i) = j] = 1/k, we get
∑k

j=1 ‖x‖2/k = ‖x‖2. So the expectation of our

estimator (Sx)2 is indeed correct!

6. The expectation being correct is fine, what about the variance? In the recitation we will show
that the variance is also controlled, i.e.,

Var((Sx)2) = 2‖x‖4/k. (4)

This is where we will use the 4-wise independence of the hash function σ, and the pairwise
independence of the function h, because the above argument only used the pairwise indepen-
dence of σ!

7. Now if we know the expectation (a.k.a. mean) is correct, and the variance is bounded as
in (4), we can use Chebyshev’s inequality.2 This says that we are close to the mean with high
probability. Recall it says that for a random variable Z with mean µ and variance σ2,

Pr[|Z − µ| ≥ λ] ≤ σ2

λ2
.

(Please don’t confuse this variance symbol σ with the hash function σ.) In our case the r.v.
is Z = (Sx)2, with mean µ = ‖x‖2, and variance at most 2‖x‖4/k, then

Pr[|Z − µ| ≥ εµ] ≤ 2‖x‖4/k
ε2µ2

=
2‖x‖4/k
ε2‖x‖4

=
2

kε2
.

So if we want a failure probability of 1/10, say, then we can set k = 20
ε2

.

8. In summary, the sketch S we defined (using the hash functions h, σ), gives us a (1 ± ε)
estimate of the squared Euclidean length of a vector with probability at least 9/10, as long
as k ≥ 20/ε2.

9. Note that instead of maintaining x ∈ Rn, we just needed to store the sketch Sx ∈ Rk, where
k ≈ 20/ε2. That’s a huge reduction in space!! Also, it’s a linear sketch, so we can maintain
this sketch as the vector x changes via updates.

2Recall how to prove this too: Pr[|Z − µ| ≥ λ] = Pr[(Z − µ)2 ≥ λ2] ≤ E[(Z−µ)2]
λ2 , where the inequality is Markov’s

inequality. Now the numerator is just the definition of variance σ2.

9

https://en.wikipedia.org/wiki/Chebyshev's_inequality

	Nearest Neighbor Search
	Two Strawman Solutions

	Locality Sensitive Hashing
	LSH for Hamming Space
	LSH for Nearest Neighbor Search
	Setting the Parameters L and k
	Analysis

	Linear Sketching and CountSketch
	Maintaining the Euclidean norm of a vector via CountSketch

