Lecture 24: Sketching and Nearest
Neighbor Search

David Woodruff
Carnegie Mellon University

Slides mostly from Alex Andoni

+ Random linear projection M: R® — RK
that preserves properties of any v € R®
with high probability ,where k «< n

(M) =(Mv)_>answer

* Matrix M doesn’t depend on v, e.g., M is
a random matrix (typically, we require
the entries of M be O(log n) bits)

Estimating the Norm of a Vector

+ For a vector x € R?, its (squared) Euclidean norm is [x|? = ¥, x?

» Want to output a number Z for which (1 —€)|x|? < Z < (1 + €)|x|?
« Choose a 2-universal independent hash function h:[n] -> [k]

« Choose a 4-universal independent hash function o: [n] - {—1,1}

X1 [Xo [Xs [X4 [Xs [Xs |X7 |Xg |.--|Xn

=

< | Zing=2 Oi X

CountSketch

+ CountSketch is a linear map S: R* - R¥
* Arow i of Sis a hash bucket, and (Sx); is the value in the bucket
+ Output |Sx|?

+ElISX?] = B[S 5(h0) =)ot) %)
= D" D X EIS(() = DS = DoDo(@)]

jooLi

= 2 X xixiy E[8(h(D) =)8(h(") = DIE[o(Do(i))]

_Lmx o
== =

4/17/2019

Estimating the Norm from
CountSketch

« In recitation, you will show Var[|Sx|?] = 0(|x|*/k)

» By Chebyshev’s inequality,

Pr[|ISx|2 — |x|?| > €[x|?] <

Var[Isx”] _ 1 o6y 0(52)

x|+ T 10

* IfShask = @(Eiz) rows, can estimate |x|? from Sx up to
a (1 + e)-factor with probability at least 9/10

000000
001100
000100
000100
110100
111111

| objects = high-dimensional vectorsj

similarity = distance b/w vectors J

{0,134

Hamming
distance

Problem:

* Preprocess: a set P of points

» Query: given a query point g, report a
point p* € P with the smallest distance

toq °
+ Useful for clustering problems, and f '

many other problems on large sets of a

multi-feature objects °

» Applications: ; ;
— speech/image/video/music n: number of points
recognition, signal processing, d: dimension
bioinformatics, etc...

* Preprocess: a set P of points

* Query: given a query point
g, report a point p € P with
the smallest distance to q

4/17/2019

point at distance < r

» Randomized: a point p
returned with 90% probability

c—a‘{)‘{)(o‘li\ma‘e
* r-near neighbor problem: ®
given a new point q, reporta
point peDs.t. d(p,q) <[cr | 4y
if there exists a /. ’

+ W:R4 - short bit-strings
— given W(x) and W(y), can distinguish between:
e Close: d(x,y) <r
e Far: d(x,y) > cr

— With high success probability: only § = 1/n2 failure

prob.
« Hamming distance of bitstrings: 0(e~? - log n) bits
X y
\ V4
010110 010101

Isd(W(x),W(y)) <t?
Yes: close, d(x,y) <r
No: far, d(x,y) > (1 +€)r

« Sketch W: uses k = 0(e™2 - logn) bits
* 1: Linear scan

— Precompute W(p) forp e D

— Given q, compute W(q)

— For each p € D, estimate distance using
W(q), W(p)

» 2: Exhaustive storage
— For each possible ¢ € {0,1}¥

» compute A[c] = point p € D such that d(W(p),o0) <t
— On query q, output A[W(q)]
— Space: 2k = nO(1/¢*)

[Near-linear space and sub-linear query time?]

Random hash function h on R4
satisfying:

for close pair (when d(q,p) <r)

P, = Pr[h(q) = h(p)] is “not-so-small’
for far pair (when d(q,p’) > cr)
P, = Pr[h(q) = h(p")] is “small”

Use several hash tables

Pr{h(q) =h
log1/P, rfh(q) = h(p)]

nP, where p = Tog1/P,

4/17/2019

Hash function g is usually a concatenation of
“primitive” functions:

= 8(p) = (h1(p), hz(p), .., hie(P))

Fact 1: pg = pp

Example: Hamming space {0,1}¢

- h(p) =p;, i.e., choose jth bit for a random j
— g(p) chooses k bits at random

~ Pri(p) = h(@)] = 1~

-P = 1—§z e71/d

-P=1- % ~ e—cr/d Pr[h(q) = h(p)]

_log1/Py _ r/d _ 1

- log1/P, - cr/d T ¢

+ Data structure is just L = n? hash tables:
— Each hash table uses a fresh random function
gi(®) = (hi1(p), ., hik(P))
— Hash all dataset points into the table
* Query:
— Check for collisions in each of the hash tables
— until we encounter a point within distance cr
* Guarantees:
— Space: O(nLlog n) = O(n!*? log n) bits, plus
space to store original points
— Expected Query time: O(L - (k+d)) = O(n? - d)
— 50% probability of success

d(a.p)
* L hash tables with g(p) = (h;(p), ..., hx(p))
set k s.t.
Pr[collision of far pair] =Pf|=1/n
Pr[collision of close pair] = P = (P}) = 1/n°
— Success probability for a hash table: PX
- L =0(1/Pf) tables should suffice
Runtime as a function of P;,P, ?
-0 (P_llf (timeToHash + nPkd))
Hence L = O(n®)
Pf -
i k=1
P; e ’ k=2
r cr

* Let p* be an r-near neighbor
— If does not exists, algorithm can output anything
* Algorithm fails when:
— near neighbor p* is not in the searched buckets
81(a), 82(q), ..., gL(@
* Probability of failure:
- Proba]Pility g,p* do not collide in a hash table: <
1-P
— Probability they do not collide in L hash tables
at most

nP
(1-pPR)" = (1 —%) <1/e

4/17/2019

* Runtime dominated by:

— Hash function evaluation: O(L - k) time

— Distance computations to points in buckets
+ Distance computations:

— Care only about far points, at distance > cr

— In one hash table, we have
+ Probability a far point collides is at most PX = 1/n
» Expected number of far points in a bucket: n - i =1
— Over L hash tables, expected number of far points
isL
+ Total: O(LK) + O(Ld) = 0(nPd) in expectation

4/17/2019

