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Lecture 24: Sketching and Nearest 
Neighbor Search

David Woodruff
Carnegie Mellon University

Slides mostly from Alex Andoni

Sketching

• Random linear projection M: R୬ → R୩
that preserves properties of any v ∈ R୬
with high probability ,where k ≪ n

• Matrix M doesn’t depend on v, e.g., M is 
a random matrix (typically, we require 
the entries of M be O(log n) bits)

Estimating the Norm of a Vector
• For a vector x ∈ R୬, its (squared) Euclidean norm is x ଶ ൌ ∑ x୧ଶ୧
• Want to output a number Z for which 1 െ ϵ x ଶ  Z  1  ϵ x ଶ

• Choose a 2-universal independent hash function h:[n] -> [k]
• Choose a 4-universal independent hash function σ: n → ሼെ1,1ሽ

. Σi: h(i) = 2 σ୧ ⋅xi . .

x1 x2 x3 x4 x5 x6 x7 x8 … xn

CountSketch

• CountSketch is a linear map S: R୬ → R୩

• A row i of S is a hash bucket, and Sx ୧ is the value in the bucket

• Output Sx ଶ

• E Sx ଶ 	ൌ Eሾ∑ ∑ δሺh i ൌ j୧ σ i 	x୧୨ ሻଶሿ	

ൌ x୧x୧ᇱEሾδ h i ൌ j δ h iᇱ ൌ j σ i σ iᇱ ሿ
୧,୧ᇱ୨

	

ൌ ∑ ∑ x୧x୧ᇱ୧,୧ᇱ୨ E δ h i ൌ j δ h iᇱ ൌ j Eሾσ i σ iᇱ ሿ
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Estimating the Norm from 
CountSketch
• In recitation, you will show Var[ Sx ଶሿ ൌ Oሺ x ସ/kሻ

• By Chebyshev’s inequality, 

Pr Sx ଶ െ x ଶ  ϵ x ଶ  ୟ୰ ୗ୶ మ

మ ୶ ర  ଵ
ଵ

if k ൌ Θሺ ଵ
మ
ሻ

• If S has k ൌ Θሺ ଵ
మ
ሻ rows, can estimate x ଶ from Sx up to 

a ሺ1  ϵሻ-factor with probability at least 9/10

Measuring similarity between 
objects

000000
001100
000100
000100
110100
111111

objects ⇒ high‐dimensional vectors

similarity ⇒ distance b/w vectors

0,1 ୢ

Hamming 
distance

Problem: Nearest Neighbor Search (NNS)

• Preprocess: a set P of points

• Query: given a query point q, report a 
point p∗ ∈ P with the smallest distance 
to q

• Useful for clustering problems, and 
many other problems on large sets of 
multi-feature objects

• Applications:
– speech/image/video/music 

recognition, signal processing, 
bioinformatics, etc…

ݍ

∗

7

n: number of points
d: dimension

Nearest Neighbor Search (NNS)

• Preprocess: a set P of points

• Query: given a query point 
q, report a point p ∈ P with 
the smallest distance to q ݍ
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Approximate NNS

• r-near neighbor problem:
given a new point q, report a 
point pD s.t. d(p,q)  r

• Randomized: a point p
returned with 90% probability

ݎܿ
if there exists a
point at distance  ݎ q

r p

cr

Sketching

• W:Ըୢ → short bit-strings
– given Wሺxሻ and Wሺyሻ, can distinguish between:

• Close: dሺx, yሻ  r
• Far: dሺx, yሻ  cr

– With high success probability: only δ ൌ 1/nଷ failure 
prob.

• Hamming distance of bitstrings: Oሺϵିଶ ⋅ log	nሻ bits

W W

010110 010101

yx

Yes: close, dሺx, yሻ  r
No: far, dሺx, yሻ  1  ϵ r

Is dሺW x ,W y ሻ  t ?

NNS: approaches
• Sketch W: uses k ൌ Oሺϵିଶ ⋅ log nሻ bits
• 1: Linear scan

– Precompute Wሺpሻ for p ∈ D
– Given q, compute W q
– For each p ∈ D, estimate distance using 
W q ,W p

• 2: Exhaustive storage
– For each possible σ ∈ 0,1 ୩

• compute A σ ൌ point p ∈ D such that dሺW p , σሻ ൏ t
– On query q, output AሾW q ሿ
– Space: 2୩ ൌ n ଵ/మ

11
Near‐linear space and sub‐linear query time?Near‐linear space and sub‐linear query time?

Locality Sensitive Hashing

Random hash function h on Rୢ

satisfying:
for close pair (when d(q,p)  r)
Pr	ሾhሺqሻ ൌ hሺpሻሿ is “high” 

for far pair (when d(q,p’)  cr)
Pr	ሾhሺqሻ ൌ hሺp′ሻሿ is “small”

Use several hash tables

12
d(q,p)

Pr	ሾhሺqሻ ൌ hሺpሻሿ

ݎ ݎܿ

1
ܲ1

ܲ2

nρ, where

P1 ൌ

P2 ൌ

ρ ൌ
log 1/Pଵ
log 1/Pଶ

“not-so-small”
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LSH for Hamming space
• Hash function g is usually a concatenation of 

“primitive” functions:
– g p ൌ hଵሺpሻ, hଶሺpሻ,… , h୩ሺpሻ

• Fact 1: ρ ൌ ρ୦
• Example: Hamming space 0,1 ୢ

– h p ൌ p୨ , i.e., choose j୲୦ bit for a random j
– gሺpሻ chooses k bits at random

– Pr h p ൌ h q ൌ 	1	– ୌୟ୫ ୮,୯
ୢ

– Pଵ ൌ 1 െ ୰
ୢ
ൎ eି୰/ୢ

– Pଶ ൌ 1 െ ୡ୰
ୢ
ൎ eିୡ୰/ୢ

– ρ ൌ ୪୭ ଵ/భ
୪୭ ଵ/మ

ൌ ୰/ୢ
ୡ୰/ୢ

ൌ ଵ
ୡ

13
d(q,p)

Pr	ሾhሺqሻ ൌ hሺpሻሿ
1

ܲ1

ܲ2
ݎ ݎܿ

Full Algorithm
• Data structure is just L ൌ n hash tables:

– Each hash table uses a fresh random function 
g୧ p ൌ h୧,ଵሺpሻ, … , h୧,୩ሺpሻ

– Hash all dataset points into the table
• Query:

– Check for collisions in each of the hash tables
– until we encounter a point within distance cr

• Guarantees:
– Space: O nLlog	n ൌ Oሺnଵା	log	nሻ bits, plus 

space to store original points
– Expected Query time: O L ⋅ ሺk  dሻ ൌ Oሺn ⋅ dሻ
– 50% probability of success

14

Choice of parameters k, L ?
• L hash tables with g p ൌ hଵሺpሻ, … , h୩ሺpሻ

• Pr[collision of far pair]    = Pଶ୩
• Pr[collision of close pair] = Pଵ୩

– Success probability for a hash table: Pଵ୩

– L ൌ O 1/Pଵ୩ tables should suffice
• Runtime as a function of Pଵ, Pଶ ?

– O ଵ
భౡ

timeToHash  nPଶ୩d 	

• Hence L ൌ Oሺnሻ

15

co
lli
sio

n 
pr
ob

ab
ili
ty

distance ݎܿ

ଵܲ

ଶܲ

ଵܲ
ଶ

ଶܲ
ଶ ݇ ൌ 1

݇ ൌ ݎ2

set k s.t.
ൌ 1/n
ൌ Pଶ

 ୩ ൌ 1/n

Analysis: correctness
• Let p∗ be an r-near neighbor

– If does not exists, algorithm can output anything
• Algorithm fails when:

– near neighbor p∗ is not in the searched buckets 
gଵ q , gଶ q , … , g q

• Probability of failure:
– Probability q, p∗ do not collide in a hash table: 
1 െ Pଵ୩

– Probability they do not collide in L hash tables 
at most

1 െ Pଵ୩

ൌ 1 െ

1
n

୬ಙ

 1/e
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Analysis: Runtime

17

• Runtime dominated by:
– Hash function evaluation: OሺL ⋅ kሻ time
– Distance computations to points in buckets

• Distance computations:
– Care only about far points, at distance  cr
– In one hash table, we have

• Probability a far point collides is at most Pଶ୩ ൌ 1/n
• Expected number of far points in a bucket: n ⋅ ଵ

୬
ൌ 1

– Over L hash tables, expected number of far points 
is L

• Total: O Lk  O Ld ൌ Oሺndሻ in expectation

Find pairs of similar images

18

how should we 
measure similarity?

Naïvely: about ݊ଶ
comparisons

Can we do better?


