Lecture 24: Sketching and Nearest Neighbor Search

> David Woodruff Carnegie Mellon University

Slides mostly from Alex Andoni

Sketching

• Random linear projection M: $\mathbb{R}^n \to \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high probability ,where $k \ll n$

 Matrix M doesn't depend on v, e.g., M is a random matrix (typically, we require the entries of M be O(log n) bits)

CountSketch

- CountSketch is a linear map S: $R^n \rightarrow R^k$
- A row i of S is a hash bucket, and $(\mbox{Sx})_i$ is the value in the bucket
- Output |Sx|²

$$\begin{split} \mathsf{E}[|\mathsf{Sx}|^2] &= \mathsf{E}[\sum_j (\sum_i \delta(h(i) = j)\sigma(i) \, x_i)^2] \\ &= \sum_j \sum_{i,i\prime} x_i x_{i\prime} \mathsf{E}[\delta(h(i) = j)\delta(h(i\prime) = j)\sigma(i)\sigma(i\prime)] \\ &= \sum_j \sum_{i,i\prime} x_i x_{i\prime} \, \mathsf{E}[\delta(h(i) = j)\delta(h(i\prime) = j)]\mathsf{E}[\sigma(i)\sigma(i\prime)] \\ &= \frac{\sum_j \sum_i x_i^2}{k} = |\mathbf{x}|^2 \end{split}$$

Estimating the Norm from CountSketch

- In recitation, you will show $\mbox{Var}[|Sx|^2]=0(|x|^4/k)$
- By Chebyshev's inequality,

 $\Pr\bigl[\big| |Sx|^2 - |x|^2 \big| > \varepsilon |x|^2 \bigr] \leq \frac{\operatorname{Var}[|Sx|^2]}{\varepsilon^2 |x|^4} \leq \frac{1}{10} \text{ if } k = \Theta(\frac{1}{\varepsilon^2})$

• If S has $k = \Theta(\frac{1}{\epsilon^2})$ rows, can estimate $|x|^2$ from Sx up to a $(1 + \epsilon)$ -factor with probability at least 9/10

LSH for Hamming space

• Hash function g is usually a concatenation of "primitive" functions:

$$- g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$$

• Fact 1:
$$\rho_g = \rho_h$$

- Example: Hamming space {0,1}^d
 - $-\ h(p) = p_j$, i.e., choose j^{th} bit for a random j
 - g(p) chooses k bits at random
 - $-\Pr[h(p) = h(q)] = 1 \frac{\operatorname{Ham}(p,q)}{d}$

Analysis: correctness
 Let p* be an r-near neighbor If does not exists, algorithm can output anything Algorithm fails when: near neighbor p* is not in the searched buckets g₁(q), g₂(q),, g_L(q) Probability of failure: Probability q, p* do not collide in a hash table: ≤ 1 - P₁^k Probability they do not collide in L hash tables at most (1 - P₁^k)^L = (1 - (1 - (1 - n^ρ)^{n^ρ}) ≤ 1/e
16

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $0(L\cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:

17

- Care only about far points, at distance > cr
- In one hash table, we have
 - Probability a far point collides is at most $P_2^{\rm k}=1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$
- Over L hash tables, expected number of far points is L
- Total: $O(Lk) + O(Ld) = O(n^{\rho}d)$ in expectation

<section-header><section-header><image>