15-451/651: Design & Analysis of Algorithms April 18, 2019
Lecture #23: Regression and Count-Sketch last changed: May 5, 2019

1 Linear Least Squares Regression

In this lecture we will take a new look at the fundamental problem of linear least-squares regres-
sion. Given data points a1, as,...,a, € R? and values by, ..., b, one often hopes to find a linear
relationship between the a;’s and b;’s. Namely, to find a linear function f : R* — R such that

f(a;) = b;

for all i = 1,2,...,n. Remember, a linear function is one where f(a) = Ele x;a; for some vector
x = (x1,x9,...,24). Linear functions have many desirable properties, and thus linear regression
is often the first step that is taken when trying to understand a relationship between data points.
However, because of noise in the observations of the data, it may be the case that no such f exists.
Nevertheless, we can still hope to find a linear function that closely approximates the data. This is
precisely the goal of least-squares linear regression. We can form the data points ai,...,a, € R?
into a matrix matrix A € R"*? and form the b;’s into a vector b € R™. Then the least squares
regression problem is to find a vector x € R¢ that minimizes the following objective function:

n
min Z(azx — b;)?
x
i=1

Le., we sum the squares of the errors between the prediction of the linear function on data point
a; (namely a]x) and the actual value b;. This can be rewritten as

min || Az — b||? (1)

x
where for a vector y € R™, the squared Euclidean length is [|y[|> = >_I_; 2. So while there may
not exist any = with Az = b, regression seeks to find the x € R? that best fits the observed data,

where best fit means minimizing the sum-of-squares objective function above. The figure below an
example of linear regression for the case of n =4,d = 1.

Figure 1: In linear regression, observations (red) are assumed to be the result of some deviations
() from an underlying relationship (blue) between a dependent variable (b) and an independent
variable (x). We want to recover the true = € R? (image from Wikipedia).

https://en.wikipedia.org/wiki/Linear_regression

In this lecture, we are focused on the setting where the quantity of data is enormous (big data!).
Namely, when there are many more data points n (the rows of A) than control variables d (coor-
dinates of x). This is referred to as the over-constrained case, where n > d. Because of the size of
n, our goal will be to solve regression with small runtime with respect to n.

1.1 A Strawman Solution

In the homework, you showed that for symmetric square matrices A, any optimal solution z*
satisfies the normal equations. Namely, if 2* = arg min, ||Az — b||?, and if A is an n x n symmetric
matrix, then it must be that A%2z* = Ab. In fact, the normal equations extend to non-symmetric
matrices as follows. For any A € R™*¢ and b € R", if * = argmin, ||Az — b|| then

ATAz™ = AT

(Check this!). For simplicity, we assume the columns of A are linearly independent. In this case,
(ATA) is invertible, thus we can solve z* via

o = (ATA)"LATD.

The formula looks a bit daunting at first, but as you can see the ideas are very simpleE However,
computing (ATA)™! requires O(min{n?d,d?n}) = O(nd?) time, which can be prohibitively large
for large n.

In these notes, we will see how, if we allow our solution to the regression problem to be
approximately optimal, we can achieve running time O(nnz(A) + poly(d/e¢)), where nnz(A) is the
number of non-zero entries in A (note that nnz(A) < nd, so the runtime is always an improvement
over using the normal equations), and € is a accuracy parameter. We assume that A has no non-zero
rows, so nnz(A) > n.

2 Approximate Regression

We first formalize what it means to approximately solve the linear regression problem on an
input matrix A € R"*? and vector b € R".

Definition 1 (Approximate Linear Regression) Given A € R™¥ b € R", and ¢ > 0, the
e-approzimate regression problem is to find ' € R such that

|Az" — b||> < (1 + €) min || Az — b||%.
z€R4
We now describe an approach to solve this problem in time O(nnz(A) 4 poly(d/e)). For n > d,

this represents a substantial improvement over the earlier O(nd?) running time. Our approach is
known as the sketch-and-solve approach, which is as follows.

'f A does not have full column rank, the optimal solution is given by the Moore Penrose pseudo-inverse. This is
a very nice idea, but we will skip over this concept for now.

https://en.wikipedia.org/wiki/Moore\OT1\textendash Penrose_inverse

Sketch-and-Solve Paradigm:

1. First, we choose a matrix S € RF*" for k < n, where the entries of S are drawn randomly
from some distribution that we will soon specify. The matrix S is known as a sketching
matric.

2. Then, we compute A := SA and b := Sb. Note now that the matrix A = SA € R¥*? and
the vector b = Sb € R*, so the dimension n has disappeared, and the matrices are now much
smaller.

3. Optimally solve (via the normal equations) the optimization problem 2’ = arg min, ||[Az—b]|.
Output this solution 2’ = (ATA)"1ATb € R?.

Runtime. Note that once the sketches A, b have been computed, the last step requires only
min{k2d, d?k} time. Thus, if we set k to be at most some polynomial in d and 1/e, the total running
time to solve min, ||[Axz — b|| (once A, b are computed) will be O(poly(d/e)). In fact, we will show
that k& = ©(d?/e?) suffices, so the running time would be O(d*/e?). Furthermore, we will choose
S from a family of matrices so that the products A = SA,b = Sb can be computed in O(nnz(A4))
time. Taken all together, the whole procedure can then be carried out in O(nnz(A) + poly(d/e))
time as claimed.

2.1 The Count-Sketch Matrix

We now (re-)introduce the count-sketch matrix S (which we saw in Lecture 22 as well). This is the
sketching matrix we will use. For an integer n > 0, let [n] = {1,2,...,n}.

Definition 2 Fiz k,n, and let S € R¥*™ be defined as follows. First, we pick a 2-wise independent
hash function h : [n] — [k] and a 4-wise independent hash function s : [n] — {1,—1}. Then we
define S via:

0 otherwise

5 = {s(j) i h(j) =i

Note then that S is a matrix consisting only of the values {0, 1, —1}. Moreover, every column of S
has exactly one non-zero value, which is placed in a random row (chosen via the hash function h),
and is given a random sign (chosen via the hash function s). E.g., here is what S may look like.

00100100
10000000
000-110-10
0-100 0001

One advantage of this matrix is that S can be applied to the matrix A in nnz(A) time.
Claim 3 The matriz product A = SA can be computed in O(nnz(A)) time.

Proof: We show that for any column vector v € R", we can compute Sv in O(nnz(v)) time, which
will complete the proof since A = SA consists of d such products. To see this, note that each

3

non-zero entry of v; of v effects only the coordinate (Sv)y;), since each column i of S has a single
non-zero value s(i), which is in row A(i). Thus, to compute Sv, we can simply intialize a vector
y = 0 € R*. Then, for each non-zero entry v; of v, we update (Sv)y() <= (Sv)p) + s(i)vi, which
requires O(1) time per non-zero entry of v. |
Thus, we have now shown we can carry the sketch-and-solve steps outlined above, with count-sketch
S as the sketching matrix, in the desired runtime. It remains now to show correctness, namely that
we obtain an (1 + €) approximate solution to the regression problem.

2.2 Correctness of the Algorithm
Our analysis will crucially rely on the definition of a subspace embedding.
2.2.1 Subspace Embeddings

Loosely speaking, a sketching matrix S is a subspace embedding for A if the length of every vector
in the column span of A is approximately preserved after multiplication by S on the left.

Definition 4 Fiz any matriz A, and let V C R™ be the column span of A. Then a matriz S € RF*"
is said to be a e-subspace embedding for V (or for matrixz A) if for all vectors x € V we have

[Szll € (1 £ €|zl
Equivalently, S is a subspace embedding for A if for all vectors x € R%, we have
[1SUz| € (1 +€)[|Ux|]

where U € R™? is an orthonormal basis for the column span of A.

Here, for a,b € R we use the notation a € (1 %+ €)b to denote (1 —€)b < a < (1 + €)b.

The main technical challenge will now be to show that, with good probability, if S is a randomly
generated instance of count-sketch, then it is a subspace embedding for [4,b] when k = Q(d?/¢2).
Here [A,b] is the matrix A with an additional column b appended. Before we do this, we first show
how S being a subspace embedding for [A, b] implies the correctness of the sketch-and-solve routine.

Claim 5 (Subspace Embeddings imply Correctness) If S is a subspace embedding for [A, b],
then the sketch-and-solve routine solves the e-approximate regression problem.

Proof: For all vectors = € R?, since Az — b is in the column span of [A, b], we have ||S(Az —b)| =
(14¢)|| Az —b| for all x € R?, thus in particular we have min,, ||S(Az —b)|| < (1+¢) min, || Az —b|.
So solving for the optimal 2’ that minimizes ||S(Az — b)|| yields a solution to the e-approximate
regression problem. |

2.2.2 Count-Sketch gives Subspace Embeddings (Optional)

To show that S is a subspace embedding, we will first show that S satisfies a property known as
approzimate matriz product. We introduce some notation. For a count-sketch S € R¥*™ and any
(1,7) € [k] x [n], let 6; ; = 1if S; ; # 0, and let 6; ; = 0 otherwise. So d; ; simply indicates whether
S;,j is zero or not. For any column j € [n], let o(j) € {1, —1} denote the sign of the non-zero entry
in the j-th column of S. Finally, we define the Frobenius norm of a matrix (or vector):

lAlr = D> A2,
\ i

4

Note that the Frobenius norm of a vector is the same as the Euclidean norm.

The approximate matrix product theorem says what you may expect: if you take two matrices A
and B, and then sketch them down to get A = SA and B = SB, then the product ATB is close to
the actual product ATB—the error is small with high probability.

Lemma 6 (Approximate Matrix Product) Let S € R**" be a count sketch matriz such that
k> Q(%) Let A, B be any two matrices with n rows, and let A := SA and B := SB. Then we
have

|ATB — ATB|r < €llAlr|Bllr | =21-34.
Proof: Let C = ATB. The approach of this proof is simple:

#1. look at the random variable |[C — ATB||% = ,((C = ATB),.)?, and upper bound its
F U, s
expected value as follows:

2/ Aul*| BuI*

E[|C-aTB}] < T 2)

#2. Then we can apply Markov’s inequality to bound the probability that ||C — ATB||% is too
much larger than its expectation. Specifically, if k > %, then Markov’s inequality gives:

Pr[||C— ATB|% > €| Al7|B|l%] <6
as desired.

So it just remains to prove , and bound the expectation, which is what the rest of the proof
does. First, observe that for any entry (u,u’) in C, we can write:

uu’ = Z Z 5t z(st,]Az uB] o = Z Z 5t Z(st,_]Al uB] w + (ATB)

t=14,5€[n] t= 115&]6["]

Now since o(i)o(j) are independent for i # j, we have E[o(i)o(j)] = 0, so E[Cy.] = (ATB)y.,
namely that the desired property holds in expectation. We now consider the variance: E[((C —

ATB),.w)?. We have

((C AT B uu Z Z U(il)‘j(i?)a(jl)a(j?) '5t1,i15t1,j16t27i25t2,j2
t1te=11i1#£j1,i27£j2€[n] (3)

- AiywAiyuBj, wB;

12,uj1,u Py u/

For a given term in the summation to have a non-zero expectation, it must be the case that
E[o(i1)o(i2)o(j1)o(j2)] # 0. Since the random signs o(-) are 4-wise independent, the expecta-
tion is always 0 unless each of the indicies 11,12, j2,j2 appear in even multiplicity in the term
o(i1)o(i2)o(j1)o(j2). Since the signs are 41 variables, the expectation must be 1 if it is not zero.
Thus, for the expectation to be non-zero, one of the following cases must occur: either 1) we have
i1 = i2 and j; = jg, or 2) we have i1 = jo and j; = io. We first show that the total contribution

[Aull3] B3
k

of the terms where 77 = i9 and j; = js is bounded by , where A, is the u-th column

of A. Note that if t; # t2, we always have 0, ;,04,,i, = 0, since the non-zero entry in the i1 = io

5

column of S cannot be in two distinct rows at once (there is only one such non-zero entry). Note
moreover that for distinct ¢1 # to, since the hash function h was pairwise independent, we have

E[5t21 0,07,) = Elot,i1 00 5,] = £ -3 = 1/k?, since this is the probability that h(i1) = t; and
h(iz) = ta. Keeping this in mind, then for a fixed i1 = i3 and j; = jo, we have
k
E| Y o(i0)o(iz)o(i1)o(f2) - 0ty 0ty Otsia - AiyuAinuBjywBigaw
t1,ta=1
4
=k Zétl z1615101 11,U]1u ()
t1=1
_ B
k

. The case
. Au|l?|| By |1
where i1 = jo and j; = 4o is analogous, where we can obtained the same upper bound of M

on the expectation of these terms. This shows , and hence completes the proof. [

2 2
Summing over all possible values of i1, j1, we get the desired upper bound of w

Now that we have shown that S satisfies the approximate matrix product property, we are finally
ready to prove that S is a subspace embedding for [A, b] with good probability when k = Q(d?/¢2).
To do this, we will need the well-known (and highly useful!) Cauchy-Schwarz inequality.

Lemma 7 (Cauchy-Schwarz) Let v,u € R" be vectors. Then
(v, w)| < [[ulll|v],
where (u,v) =Y 1" | uv; is the inner product. Moreover, if A is a matriz, then

[Av[} < [[A[l#[lv]]-

Proof: If 6 is the angle between the vectors v, u (that is, the angle between the two vectors in the
plane they span), then the dot product over Euclidean space satisfies (u,v) = ||ul|||v|| cos(€). The
desired inequality follows from the fact that cos(f) < 1 for all §. The second claim follows from
application of Cauchy-Schwarz on each coordinate of Av, which itself is an inner product between
a row of A and v. [|

Theorem 8 (Subspace Embedding) Let V be any fized d-dimensional subspace. Then if k >
Q(%), then with probability at least 1 — §, we have for all x € V simultaneously:

[Sz]} = (1 & e)]|

Proof: Let U € R™*? be an orthonormal basis for the subspace V. Since U is orthonormal, we
have UTU = I; (because the columns of U are orthogonal and normal, i.e., of unit length) and
|U||% = d (because orthogonal matrices have column norm 1 for every column). Also note that
since the columns of U are orthogonal, for any vector x € R? we have ||Uz||?> = ||z||> (orthogonal
matrices preserve distances).

Use U to denote the sketch SU, and let ¢ = ¢/d. Then since k > Q(%) > Q(ﬁ), by the
approximate matrix product property from Lemma [6], with probability at least 1 — § we have

€
[UTU-UTUp < U} = UTU-Lfr < (5)-d<e (5)

Now for any vector € RY,

[Uz|? — [Uz]* = (Uz)"(Uz) — (Uz)"(Ux)
= a:(UU — Id)m

But now we can apply Cauchy-Schwarz twice, to say

< |lz[[|(UTU — Ig)z|| (by Cauchy-Schwarz)
< |lz||I(UTU — 1) p||x|l (again by Cauchy-Schwarz)
< ellz|” (by ()
= ¢||Uz|?.

This implies that [|[Uz||?> < (1 4 ¢)|Uz||? for all 2 € R% taking square roots and using that
(I4+¢) < (1+e¢€) gives us |Uz|| < (1 + ¢)||Uz||. A similar calculation shows that |Uz| >

(1= e)|[Ux]]

Thus ||SUz|| = ||[Uz|| = (1 £ ¢€)||Uz|| for any = € R%. Since any vector y € V can be written as

y = Uz for some x € R?, we have ||Sy| = (1 £ ¢)|ly|| for all y € V, which completes the proof. M

Finally, since the subspace V spanned by [A,b] is at most d + 1 dimensional, we conclude that
setting k = @(%) is sufficient for S to be a subspace embedding with probability at least 1 — ¢,
which completes the proof of the approximate linear regression algorithm.

	Linear Least Squares Regression
	A Strawman Solution

	Approximate Regression
	The Count-Sketch Matrix
	Correctness of the Algorithm
	Subspace Embeddings
	Count-Sketch gives Subspace Embeddings (Optional)

