Lecture 23: Least Squares Regression (and recap of LSH)

> David Woodruff CMU

Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap

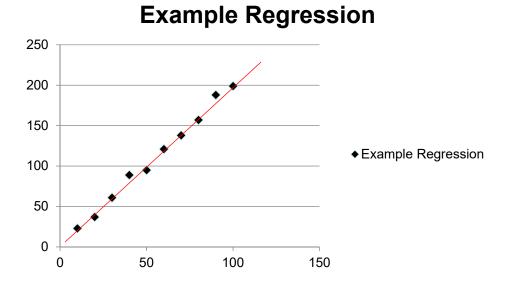
Regression

Linear Regression

• Understand linear dependencies between variables in the presence of noise.

Example

- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data



Regression

Standard Setting

- One measured variable b
- A set of predictor variables a₁,..., a_d
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

 ϵ is assumed to be noise and the x_i are model parameters we want to learn

Can assume $x_0 = 0$ by increasing d to d+1 and setting $a_0 = 1$

Now consider n observations of b

Regression

Matrix form

Input: $n \times d$ -matrix A and a vector $b=(b_1,..., b_n)$ n is the number of observations; d is the number of predictor variables

Output: x^{*} so that Ax* and b are close

- Consider the over-constrained case, when $n \gg d$
- Note: there may not be a consistent solution \boldsymbol{x}^*

Least Squares Regression

• Find x* that minimizes $|Ax-b|_2^2$

For a vector
$$y \in \mathbb{R}^n$$
, $|y|_2^2 = \sum_{i=1,\dots,n} y_i^2$

Least Squares Regression

• In HW 7, you looked at

 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} |\mathbf{A}\mathbf{x} - \mathbf{b}|_2^2,$

and argued if A is n x n symmetric, then $A^2x^* = Ab$

- Extends to non-symmetric matrices: for $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$, if $x^{*} = \operatorname{argmin}_{x} |Ax b|_{2}^{2}$, then $A^{T}Ax^{*} = A^{T}b$
- If the columns of A are linearly independent,
 - A^TA is d x d and full rank
- Closed form expression: $x^* = (A^T A)^{-1} A^T b$

Least Squares Regression

- In practice, n is very large and d is moderate
- Computing $x^* = (A^T A)^{-1} A^T$ b takes nd^2 time
- Want running time nnz(A) + poly(d)
 - nnz(A) is the number of non-zero entries of A, and you need this time just to read the input
 - poly(d) is hopefully a low-degree polynomial in d

Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap

Sketching to Solve Least Squares Regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ <= (1+ε) min_x |Ax-b|₂ with say, 99% probability
- Would like a running time of the form

 $nnz(A) + poly(d/\epsilon)$

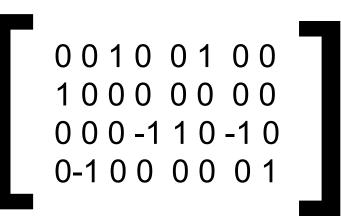
nnz(A) is at most nd, so improves our earlier nd² time

Sketching to Solve Least Squares Regression

- Draw S from a k x n random family of matrices, for a value k << n
 - S is known as the sketching matrix
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂ using our closed-form expression
- Black box reduction to original, smaller problem

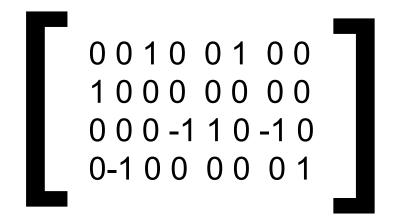
Fast Sketching Matrices

- CountSketch matrix
- Define k x n matrix S, for $k = O(d^2/\epsilon^2)$
- S is really sparse: single randomly chosen non-zero entry per column



Key Property: S*A computable in nnz(A) time

S*A Computable in nnz(A) Time



- For each column y of A, can compute S*y in nnz(y) time. Why?
- For each non-zero entry of y, it indexes into a column of S and there is a single non-zero entry in that column, so can update Sy in O(1) time per entry

Subspace Embeddings

S is a subspace embedding if for an n x d matrix A,

W.h.p., for all x in \mathbb{R}^d , $|SAx|_2 = (1 \pm \varepsilon)|Ax|_2$ Entire column space of A is preserved

Why is this useful for regression?

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\varepsilon) \min_y |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \epsilon) |Ax-b|_2$ for all x
- Solve $\operatorname{argmin}_{y} |(SA)y (Sb)|_{2}$

It remains to show SA is a subspace embedding with $k = O(\frac{d^2}{\epsilon^2})$ rows

Approximate Matrix Product

- Let C and D be any two matrices for which C has n columns and D has n rows
- Let S be a CountSketch matrix with n columns. Then,

Pr[|CS^TSD − CD|_F² ≤ [6/(δ (# rows of S))]*|C|_F² |D|_F²] ≥ 1 − δ , where for a matrix E, |E|_F² is the sum of squares of its entries

 Proof: variance calculation like you did in last recitation – will do it in this week's recitation ^(C)

Orthonormality

• For any n x d matrix A with linearly independent columns,

 There's a d x d invertible matrix R so the columns of AR have length 1 and are perpendicular

- What is $|ARx|_2^2$ for a unit vector x?
 - $|ARx|_{2}^{2} = |\sum_{i} (AR)_{i} x_{i}|^{2}$
 - $= \sum_{i} |(AR)_{i} x_{i}|^{2} + \sum_{i \neq j} < (AR)_{i} x_{i}, (AR)_{j} x_{j} > = |x|_{2}^{2}$
- What is (AR)^TAR?

From Matrix Product to Subspace Embeddings

- Want: w.h.p., for all x in R^d , $|SAx|_2 = (1 \pm \varepsilon)|Ax|_2$
- Can assume columns of A are orthonormal
 Unit length and perpendicular to each other
- Suffices to show |SAx|₂ = 1 ± ε for all unit x
 For regression, apply S to [A, b]
- SA is a $6d^2/(\delta\epsilon^2) \times d$ matrix

From Matrix Product to Subspace Embeddings

- Suffices to show for all unit x, $|x^{T}A^{T}S^{T}SA x - x^{T}x| \le |A^{T}S^{T}SA - I|_{F} \le \epsilon$
- Matrix product result implies

 $Pr[|CS^TSD - CD|_{F^2} ≤ [6/(\delta(\# \text{ rows of } S))] * |C|_{F^2} |D|_{F^2}] ≥ 1 - \delta$

- Set $C = A^T$ and D = A.
- Then $|A|^2_F = d$ and (# rows of S) = 6 d²/($\delta\epsilon^2$), which shows $|A^TS^T SA I|_F \le \epsilon$

From Matrix Product to Subspace Embeddings

- Still need for all unit x, $|x^T A^T S^T S A x x^T x| \le |A^T S^T S A I|_F$
- Follows if we show $|ABC|_F \leq |A|_F |B|_F |C|_F$ for any matrices A, B, and C
- The above follows if we show $|AB|_F \leq |A|_F |B|_F$ for any two matrices A and B

•
$$|AB|_F^2 = \sum_{\text{rows } A_i \text{ and columns } B_j} < A_i, B_j >^2$$

 $\leq \sum_{\text{rows } A_i \text{ and columns } B_j} |A_i|_2^2 |B_j|_2^2 = |A|_F^2 |B|_F^2$

Wrapup

- Goal: output x' for which |Ax'-b|₂ <= (1+ε) min_x |Ax-b|₂ with say, 99% probability
- We used the sketch and solve paradigm to solve this in nnz(A) + poly(d/ε) time

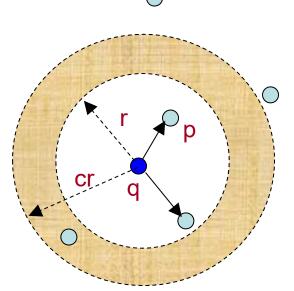
Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap

Approximate NNS

c-app • r-near neighbor problem: given a new point q, report a point p∈D s.t. d(p,q) ≤ r cr

if there exists a point at distance $\leq r$



 Randomized: a point p returned with 90% probability

Locality Sensitive Hashing

Random hash function h on R^d satisfying:

$$\begin{split} P_1 &= \text{for close pair (when "not-so-small")} \\ &Pr[h(q) = h(p)] \text{ is "high"} \\ P_2 &= \text{for far pair (when d(q,p) > cr)} \\ &Pr[h(q) = h(p)] \text{ is "small"} \end{split}$$

Use several hash tables

$$n^{\rho}$$
, where $\rho = \frac{\log 1/P_1}{\log 1/P_2}$

LSH for Hamming space

- Hash function g is usually a concatenation of "primitive" functions:
 - $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- Fact 1: $\rho_g = \rho_h$
- Example: Hamming space {0,1}^d
 - $h(p) = p_j$, i.e., choose jth bit for a random j
 - g(p) chooses k bits at random

-
$$\Pr[h(p) = h(q)] = 1 - \frac{\operatorname{Ham}(p,q)}{d}$$

$$-P_1 = 1 - \frac{r}{d} \approx e^{-r/d}$$

-
$$P_2 = 1 - \frac{cr}{d} \approx e^{-cr/d}$$

$$- \rho = \frac{\log 1/P_1}{\log 1/P_2} \approx \frac{r/d}{cr/d} = \frac{1}{c}$$

Full Algorithm

- **Data structure** is just $L = n^{\rho}$ hash tables:
 - Each hash table uses a fresh random function $g_i(p) = \langle h_{i,1}(p), ..., h_{i,k}(p) \rangle$
 - Hash all dataset points into the table
- Query:
 - Check for collisions in each of the hash tables
 - until we encounter a point within distance cr
- Guarantees:
 - Space: $O(nL\log n) = O(n^{1+\rho} \log n)$ bits, plus space to store original points
 - Expected Query time: $O(L \cdot (k + d)) = O(n^{\rho} \cdot (k + d))$
 - 50% probability of success

Choice of parameters k, L?

- L hash tables with $g(p) = \langle h_1(p), ..., h_k(p) \rangle$
- Pr[collision of far pair] = $P_2^k = 1/n$
- Pr[collision of close pair] = $P_1^k = (P_2^{\rho})^k = 1/n^{\rho}$
 - Success probability for a hash table: $\ensuremath{\mathtt{P}}_1^k$
 - $L = O(1/P_1^k)$ tables should suffice
- Runtime as a function of P_1, P_2 ?

$$- O\left(\frac{1}{P_1^k} \left(\text{timeToHash} + nP_2^k d \right) \right)$$

• Hence $L = O(n^{\rho})$

Analysis: correctness

- Let p* be an r-near neighbor
 - If does not exist, algorithm can output anything
- Algorithm fails when:
 - near neighbor p^* is not in the searched buckets $g_1(q),g_2(q),\ldots,g_L(q)$
- Probability of failure:
 - Probability q, p* do not collide in a hash table: $\leq 1 P_1^k$
 - Probability they do not collide in L hash tables at most

$$\left(1-P_1^k\right)^L = \left(1-\frac{1}{n^{\rho}}\right)^{n^{\rho}} \le 1/e$$

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $O(L \cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:
 - Care only about far points, at distance > cr
 - In one hash table, we have
 - Probability a far point collides is at most $P_2^k = 1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$
 - Over L hash tables, expected number of far points is
- Total: $O(Lk) + O(Ld) = O(n^{\rho}(k + d)))$ in expectation