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Regression
Linear Regression
• Understand linear dependencies between variables in 

the presence of noise.

Example
• Ohm's law V = R ∙ I 

• Find linear function that 
best fits the data 0
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Regression
Standard Setting
• One measured variable b
• A set of predictor variables a  ,…, a
• Assumption:

b  = x  + a   x  + … + a    x   + 

is assumed to be noise and the xi are model 
parameters we want to learn

1 d

1

1 d

d

0

Can assume x0 = 0 by increasing d to d+1 and setting a ൌ 1	

Now consider n observations of b



Regression
Matrix form
Input:  nd-matrix A and a vector b=(b1,…, bn)

n is the number of observations; d is the number 
of  predictor variables

Output: x* so that Ax* and b are close

• Consider the over-constrained case, when n d

• Note: there may not be a consistent solution ∗



Least Squares Regression

• Find x* that minimizes |Ax-b|22

For a vector ୬, ଶ
ଶ

୧
ଶ

୧ୀଵ,..,୬



• In HW 7, you looked at 

x∗ ൌ argmin୶ Ax െ b ଶ
ଶ, 

and argued if A is n x n symmetric, then Aଶx∗ ൌ Ab

• Extends to non-symmetric matrices: for A ∈ R୬ൈୢ and 
b ∈ R୬, if x∗ ൌ argmin୶ Ax െ b ଶ

ଶ, then AAx∗ ൌ Ab

• If the columns of A are linearly independent, 
• AA is d x d and full rank

• Closed form expression: x* = (ATA)-1 AT b 

Least Squares Regression



Least Squares Regression
• In practice, n is very large and d is moderate

• Computing x* = (ATA)-1 AT b takes ndଶ time

• Want running time nnz(A) + poly(d)

• nnz(A) is the number of non-zero entries of A, and you 
need this time just to read the input

• poly(d) is hopefully a low-degree polynomial in d
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Sketching to Solve Least Squares Regression 

 How to find an approximate solution x to minx |Ax-b|2 ?

 Goal: output x‘ for which |Ax‘-b|2 <= (1+ε) minx |Ax-b|2
with say, 99% probability

 Would like a running time of the form

nnz(A) + poly(d/ )

 nnz(A) is at most nd, so improves our earlier ଶ time



• Draw S from a k x n random family of matrices, 
for a value k << n
• S is known as the sketching matrix

• Compute S*A and S*b

• Output the solution x‘ to minx‘ |(SA)x-(Sb)|2 using 
our closed-form expression

• Black box reduction to original, smaller problem 

Sketching to Solve Least Squares Regression 



Fast Sketching Matrices 

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

 CountSketch matrix

 Define k x n matrix S, for k = O(d2/ε2)

 S is really sparse: single randomly chosen non-zero 
entry per column

Key Property: S*A computable in nnz(A) time



S*A Computable in nnz(A) Time

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

 For each column y of A, can compute S*y in nnz(y) 
time. Why? 

 For each non-zero entry of y, it indexes into a column 
of S and there is a single non-zero entry in that 
column, so can update Sy in O(1) time per entry



S is a subspace embedding if for an n x d 
matrix A, 

W.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

Entire column space of A is preserved

Why is this useful for regression?

Subspace Embeddings



Subspace Embeddings for 
Regression

• Want x so that |Ax-b|2 (1+ε) miny |Ay-b|2
• Consider subspace L spanned by columns of A 

together with b
• Then for all y in L, |Sy|2 = (1± ε) |y|2
• Hence, |S(Ax-b)|2 = (1± ε) |Ax-b|2 for all x
• Solve argminy |(SA)y – (Sb)|2

It remains to show SA is a subspace embedding 
with k = ௗమ

ఢమ
rows



Approximate Matrix Product
• Let C and D be any two matrices for which C has n 

columns and D has n rows

• Let S be a CountSketch matrix with n columns. Then,

Pr[|CSTSD – CD|F2 ≤ [6/( (# rows of S))]*|C|F2 |D|F2 ,
where for a matrix E, 

ଶ is the sum of squares of its entries 

• Proof: variance calculation like you did in last 
recitation – will do it in this week’s recitation 



Orthonormality

• For any n x d matrix A with linearly 
independent columns, 

– There’s a d x d invertible matrix R so the columns 
of AR have length 1 and are perpendicular

• What is ଶ
ଶ for a unit vector x?

– ARx ଶ
ଶ ൌ 	 | ∑ AR ୧x୧|ଶ୧

– ൌ ∑ AR ୧x୧ ଶ  ∑ ൏ AR ୧x୧, AR ୨x୨ ୧ஷ୨୧ ൌ x ଶ
ଶ

• What is 



From Matrix Product to 
Subspace Embeddings

• Want: w.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

• Can assume columns of A are orthonormal
– Unit length and perpendicular to each other

• Suffices to show |SAx|2 = 1 ± ε for all unit x
– For regression, apply S to [A, b]

• SA is a 6d2/(δε2) x d matrix



From Matrix Product to 
Subspace Embeddings

• Suffices to show for all unit x,
|xATST SA x – xx| ≤ |ATST SA – I|F  ε

• Matrix product result implies

Pr[|CSTSD – CD|F2 C|F2| * [((rows of S #)ߜ)/6] ≥ |D|F2ሿ  1 െ δ

• Set C = AT and D = A. 

• Then |A|2F = d and (# rows of S) = 6 d2/(δε2), which shows 
|ATST SA – I|F  ε



From Matrix Product to 
Subspace Embeddings

• Still need for all unit x, |xATST SA x – xx| ≤ |ATST SA – I|F

• Follows if we show ABC   A  B  C  for any matrices 
A, B, and C

• The above follows if we show AB   A  B  for any two 
matrices A and B

• AB 
ଶ ൌ ∑ ൏ A୧, B୨ ଶ	୰୭୵ୱ		ୟ୬ୢ	ୡ୭୪୳୫୬ୱ	ౠ

  A୧ ଶଶ B୨ ଶ
ଶ ൌ A 

ଶ B 
ଶ

୰୭୵ୱ	ୟ୬ୢ	ୡ୭୪୳୫୬ୱ	ౠ



Wrapup

• Goal: output x‘ for which |Ax‘-b|2 <= (1+ε) 
minx |Ax-b|2 with say, 99% probability

• We used the sketch and solve paradigm to 
solve this in nnz(A) + poly(d/ ) time
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Approximate NNS

• r-near neighbor problem:
given a new point , report a 
point  s.t. d(p,q) 

• Randomized: a point 
returned with 90% probability

if there exists a
point at distance q

r p

cr



Locality Sensitive Hashing
Random hash function on ୢ

satisfying:
for close pair (when d(q,p)  r)
Pr	ሾhሺqሻ ൌ hሺpሻሿ is “high” 

for far pair (when d(q,p)  cr)
Pr	ሾhሺqሻ ൌ hሺpሻሿ is “small”

Use several hash tables

24

ρ, where

P1 ൌ

P2 ൌ

ଵ

ଶ

“not-so-small” )



LSH for Hamming space
• Hash function g is usually a concatenation of “primitive” 

functions:
– g p ൌ hଵሺpሻ, hଶሺpሻ, … , h୩ሺpሻ

• Fact 1: ρ ൌ ρ୦
• Example: Hamming space 0,1 ୢ

– h p ൌ p୨ , i.e., choose j୲୦ bit for a random j
– gሺpሻ chooses k bits at random
– Pr h p ൌ h q ൌ 	1	– ୌୟ୫ ୮,୯

ୢ

– Pଵ ൌ 1 െ ୰
ୢ
ൎ eି୰/ୢ

– Pଶ ൌ 1 െ ୡ୰
ୢ
ൎ eିୡ୰/ୢ

– ρ ൌ ୪୭ ଵ/భ
୪୭ ଵ/మ

ൎ ୰/ୢ
ୡ୰/ୢ

ൌ ଵ
ୡ
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Full Algorithm
• Data structure is just  hash tables:

– Each hash table uses a fresh random function 
g୧ p ൌ h୧,ଵሺpሻ, … , h୧,୩ሺpሻ

– Hash all dataset points into the table
• Query:

– Check for collisions in each of the hash tables
– until we encounter a point within distance cr

• Guarantees:
– Space: O nLlog	n ൌ Oሺnଵା	log	nሻ bits, plus space to 

store original points
– Expected Query time: O L ⋅ ሺk  dሻ ൌ Oሺn ⋅ ሺk  dሻሻ
– 50% probability of success
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Choice of parameters ?

• L hash tables with g p ൌ hଵሺpሻ, … , h୩ሺpሻ

• Pr[collision of far pair]    = Pଶ୩

• Pr[collision of close pair] = Pଵ୩
– Success probability for a hash table: Pଵ୩

– L ൌ O 1/Pଵ୩ tables should suffice

• Runtime as a function of Pଵ, Pଶ ?

– O ଵ
భౡ

timeToHash  nPଶ୩d 	

• Hence L ൌ Oሺnሻ
27

set k s.t.
ൌ 1/n

ൌ Pଶ
 ୩ ൌ 1/n



Analysis: correctness
• Let ∗ be an -near neighbor

– If does not exist, algorithm can output anything
• Algorithm fails when:

– near neighbor p∗ is not in the searched buckets 
gଵ q , gଶ q ,… , g q

• Probability of failure:
– Probability q, p∗ do not collide in a hash table:  1 െ
Pଵ୩

– Probability they do not collide in L hash tables at most

1 െ Pଵ୩

ൌ 1 െ

1
n

୬ಙ

 1/e
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Analysis: Runtime

29

• Runtime dominated by:
– Hash function evaluation: time
– Distance computations to points in buckets

• Distance computations:
– Care only about far points, at distance 
– In one hash table, we have

• Probability a far point collides is at most Pଶ୩ ൌ 1/n
• Expected number of far points in a bucket: n ⋅ ଵ

୬
ൌ 1

– Over hash tables, expected number of far points is 

• Total:  in 
expectation


