
15-494/694: Cognitive Robotics

Lecture 2:

Cozmo Software
Architecture

and

Python Control Structure

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Cozmo Software Architecture

● A robot is a complex collection of
interacting hardware/software systems.

● Example: navigation isn't just motion.
– Need vision to find landmarks.
– Head + body motion to point the camera.

● Layers of control:
– Low level: control one actuator
– Middle level: coordinate multiple actuators

(e.g., head and wheels) for one task.
– High level: goal-directed behaviors.

3

Control Levels in Cozmo (1)

● Actions: basic operations that focus on
one effector but can optionally include
some gratuitous animations.

 drive_forward

 turn_in_place

 set_head_angle

 move_lift

 say_text

4

Control Levels in Cozmo (2)

● Animations: short behavior sequences
that involve a combination of body
motions, facial expressions, and sound
effects.

● Designed by former Pixar animators.
● In SDK version 1.4.10 there are 997

animations, organized into groups.
● See robot.conn.anim_names for the list.
● Use the Cozmo Animation Explorer tool to

try them out.

5

997 Animations

6

Control Levels in Cozmo (2.5)

● Animation Triggers: Families of
animations that are variants on a theme.

● Playing a trigger will select one animation
 at random from the family.

● In version 1.4.10 of the SDK there are 603
triggers.

● dir(cozmo.anim.Triggers)
● Both animations and triggers have well-

defined completion points.

7

603 Animation Triggers

8

Control Levels in Cozmo (3)
● Behaviors: Complex operations that try to

accomplish a goal.
● Only seven were defined:

– Vision: FindFaces, LookAroundInPlace,
_EnrollFace

– Manipulation: KnockOverCubes, RollBlock,
StackBlocks

– Human interaction: PounceOnMotion
● Behaviors use multiple animations.
● Behaviors never complete; they must be

explicitly stopped.

9

Only 7 Behaviors

In the Animation Explorer, behaviors
only run for 30 seconds.

_EnrollFace

10

Python Control Concepts

● The Cozmo SDK is written in industrial
strength Python 3.7.

● To understand the SDK, you must be
familiar with:

– Iterators
– Generators
– Coroutines
– Asyncio: futures, tasks, handles,

event loops

11

Iterators

>>> nums = [1,2,3,4]

>>> for x in nums: print(f'x = {x}')

x=1
x=2
x=3
x=4

>>> [x*x for x in nums]

[1, 4, 9, 16]

list comprehension

12

What Makes an Object Iterable?

Defines an __iter__() method that returns an
iterator.

>>> nums.__iter__

<method-wrapper '__iter__' of list
object at 0x7ffa366baf48>

>>> nums.__iter__()

<list_iterator object at 0x7ffa34aa3c88>

13

What Is an Iterator?

References a sequence and defines a
__next__() method that returns the next
item or raises StopIteration if there are no
more items.

>>> a = nums.__iter__()

>>> a.__next__()

1

>>> a.__next__()

2

14

StopIteration

>>> a.__next__()

3

>>> a.__next__()

4

>>> a.__next__()

Traceback: … StopIteration

15

How a For Loop Works

for x in nums: print(f'x = {x}')

it = nums.__iter__()
try:
 while True:
 x = it.__next__()
 print(f'x = {x}')
except StopIteration:
 pass

16

Lots of Things Are Iterable

>>> '__iter__' in dir([1,2,3])
True

>>> '__iter__' in dir(range(3,5))
True

>>> '__iter__' in dir({1,2,3})
True

>>> '__iter__' in dir({'foo' : 3})
True

list

range

set

dictionary

17

Make Your Own Iterable Thing

 Needs an __iter__ method.

class MyIterable():

 def __init__(self,vals):
 self.vals = vals

 def __iter__(self):
 return MyIterator(self.vals)

18

Make Your Own Iterator

 Needs a __next__ method.

class MyIterator():
 def __init__(self,vals):
 self.vals = vals
 self.index = 0

 def __next__(self):
 if self.index == len(self.vals):
 raise StopIteration
 else:
 self.index += 1
 return self.vals[self.index-1]

19

Testing MyIterable

>>> a = MyIterable([1, 2, 3, 4])

>>> for x in a: print(f'x = {x}')
x = 1
x = 2
x = 3
x = 4

>>> [x**3 for x in a]

[1, 8, 27, 64]

20

Generators

● Generators are coroutines that suspend
their state using the yield keyword.

● Generators are represented by
generator objects instead of functions.

● Generators can be used either as
producers (similar to iterators) or as
consumers.

21

Generator As Producer

def myproducer(vals):
 print('myproducer called')
 index = 0
 while index < len(vals):
 print('yielding')
 yield vals[index]
 index += 1
 raise StopIteration

Because “yield” appears in myproducer,
calling myproducer doesn't actually run the
function; it returns a generator object.

22

Generator As Producer

>>> g = myproducer(['foo','bar'])
<generator object myproducer at …>

>>> next(g)
myproducer called
yielding
'foo'

>>> next(g)
yielding
'bar'

23

Generator Expressions

Like a list comprehension, but uses
parentheses instead of brackets: lazy.

>>> g = (x**2 for x in [1,2,3,4,5])
<generator object <genexpr> at …>

>>> next(g)
1

>>> g.__next__()
4

24

list() exhausts a generator

>>> g
<generator object <genexpr> at …>

>>> list(g)
[9, 16, 25]

25

Generator As Consumer

def myconsumer():
 print('myconsumer called')
 try:
 while True:
 x = yield
 print(f'{x} squared is {x**2}')
 except GeneratorExit:
 print('Generator closed.')

A statement 'x = yield' marks a consumer
generator, which must be primed.

26

Generator As Consumer

>>> c = myconsumer()
<generator object myconsumer at …>

>>> c.send(None)
myconsumer called

>>> for x in range(1,5): c.send(x)
1 squared is 1
2 squared is 4
…

>>> c.close()
Generator closed.

27

Generator Pipeline

Generators can be chained together for
complex processing tasks.

That's all we're going to say about
generators. What about coroutines?

Producer

No x=yield
Just c.send

Filter

x=yield
…

c.send

Consumer

x=yield
No c.send

Filter

x=yield
…

c.send

...

28

Python Will Drive You Crazy

● Python changes every year.
● This has been going on for a long time.
● The terminology changes as well.
● Result: Python can be confusing.
● Reading tutorials written several years

ago will drive you crazy.
● Coroutines are a prime example.

29

Newbie: “How do coroutines work?”

Expert: “Well, in Python 2.7 it did this,
but then in Python 3.3 it did that, and
now in Python 3.5 it does this other thing,
but in Python 3.7 it's going to ...”

Newbie: “Kill me now.”

30

History of Python Coroutines

● You don't want to know.

● Stuff to forget about:

@coroutine decorator

@asyncio.coroutine decorator

“generators are coroutines” – no longer

31

Coroutines Since Python 3.5

● In computer science, coroutines are
procedures that repeatedly cede control
to their caller and get it back again.

● In CS terms, Python generators are
coroutines. They use “yield”.

● In Python 3.5 and up, “coroutine” has a
more specific meaning, and generators
are not coroutines.

32

Coroutines Since Python 3.5

● The asyncio module provides a kind of
scheduler called an event loop.

● Coroutines are asynchronously executing
procedures, ceding control to each other
or the event loop that manages them.

● Coroutines in Python 3.5 are defined with
async def instead of the usual def.

● They use the await keyword to cede
control until the thing they're awaiting
has returned. They cannot use yield.

33

Coroutine Example

import asyncio

async def mycor():
 for i in range(1,5):
 print(f'i={i}', end='')
 x = await yourcor(i)
 print(f' x={x}', x)

async def yourcor(i):
 await asyncio.sleep(1)
 return i**2

34

Testing the Coroutine Example

>>> c = mycor()
<coroutine object mycor at …>

>>> loop = asyncio.get_event_loop()
<_UnixSelectorEventLoop …>

>>> loop.run_until_complete(c)
i=1 x=1
i=2 x=4
i=3 x=9
i=4 x=16

35

Tasks and Futures

● A Future is an object representing an
asynchronous computation that may not
yet have completed.

● You can attach handlers to futures that
will be notified when the future
completes.

● A Task is a kind of Future that is
managed by an event loop.

36

Adding Tasks To the Queue

>>> t = loop.create_task(yourcor(5))
<Task pending coro=yourcor() …>

>>> loop.run_until_complete(t)
25

37

Scheduling Non-Coroutines

def goof(i):
 print('i=', i)

>>> loop.call_soon(goof, 150)
<Handle goof(150) at …>

>>> loop.call_later(3,goof,250)
<TimerHandle when=…>

>>> loop.run_forever()
i=150

i=250

38

The Big Picture

Cozmo SDK

Actions, Animations,
Behaviors, SDK Events

asyncio

asyncio event loop,
futures, tasks

Python 3.5+

coroutines
async def, await

39

SDK and the Event Loop

● The Cozmo SDK includes an asyncio
event loop which is accessible at
robot.loop.

● The Cozmo SDK provides its own classes
for representing actions, animations, etc.
as tasks managed by this event loop.

● The SDK (not asyncio) method
wait_for_completed() waits until the
event loop has completed the task.

40

Cozmo SDK Actions Are Tasks

#!/usr/bin/python3

import asyncio
import cozmo

async def mytalker(robot):
 action = robot.say_text('hello')
 print('act =', action)
 coro = action.wait_for_completed()
 print('coro =', coro)

cozmo.run_program(mytalker)

41

Cozmo Actions Are Tasks

$./mytalker.py

… [set up connection to robot …]

act = <SayText state=action_running …>
coro = <coroutine object
 Action.wait_for_completed …>

42

The SDK's Event Dispatcher

● The SDK defines a collection of robot
events (e.g., an object has become
visible, or a cube is tapped).

● The SDK includes its own event
dispatcher, and a way to set up listeners
for SDK events.

● Don't confuse this with the asyncio event
loop. Despite the name “event loop”,
asyncio doesn't have events. The SDK
does.

43

Threads

● The Cozmo Python SDK is single-
threaded.

● The REPL runs in a separate thread.

● But cozmo-tools uses multiple threads for
visualization tools such as the world map
viewer.

● Not thread-safe, but close enough.

44

Does This Look Like Fun? No???

● Explcitly managing coroutines, tasks, etc.
looks like it could be a real pain.

● Is there a better way?

● State machines. See next lecture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

