
1

15-494/694: Cognitive Robotics

Lecture 12:
Backpropagation Learning

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Training A Linear Unit

y=w0+w1⋅x

S

w0

x

y

w1

1

3

LMS / Widrow-Hoff Rule

y is actual output, d is desired output, y-d is error.

Works fine for a single layer of trainable weights.

What about multi-layer networks?

S

wi

xi

y

Δwi = −η(y−d)xi

η is a learning rate
(could useη=0.1)

4

With Linear Units, Multiple Layers
Don't Add Anything





U : 2×3 matrix

V : 3×4 matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x

5

What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable
weights

separating hyperplane

y = h(w0 + w1⋅x1 + w2⋅x2)

6

2 layers of
trainable
weights

convex polygon region

7

3 layers of
trainable
weights

composition of polygons:
arbitrary regions

8

How Do We Train A
Multi-Layer Network?

Error = y-dy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.

9

How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1
2∑

p
dp

−yp

2

Use gradient descent error minimization:

 wij = −
∂E
∂wij

Works if the nonlinear transfer function is differentiable.

10

Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi xi

E =
1
2∑p

(dp
−yp

)
2 d E

d y
= y−d

∂ E
∂wi

=
d E
d y

⋅
∂ y
∂wi

= (y−d)xi

Δwi = −η
∂ E
∂wi

= −η(y−d)xixi

wi

y

How do we extend this to two layers?

11

Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e−x

g 'x = gx ⋅1−gx

g x=tanhx 

g 'x=1/cosh2
x

g must be differentiable

12

ReLU and GELU Functions

● ReLU: Rectified Linear Unit

● GELU: Gaussian Error Linear Unit

13

Gradient Descent with Nonlinear Units

 y=g net=tanh ∑i

wi x i

dE
d y

=y−d ,
d y

dnet
=1/cosh2

net ,
∂net
∂wi

=xi

∂E
∂wi

=
dE
d y

⋅
d y

dnet
⋅
∂net
∂w i

= y−d/cosh2

∑i

wi x i⋅x i

tanh(Sw
i
x

i
)xi

wi y

14

Now We Can Use The Chain Rule

yk

w jk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk

= yk−dk⋅g'netk 

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

=
∂E

∂netk

⋅y j

∂E
∂y j

= ∑
k  ∂E

∂netk

⋅
∂netk

∂ y j


 j =
∂E

∂net j

=
∂E
∂ y j

⋅g'net j

∂E
∂wij

=
∂E

∂net j

⋅y i

15

Weight Updates

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

= k⋅y j

∂E
∂wij

=
∂E

∂net j

⋅
∂net j

∂wij

=  j⋅y i

 w jk = −⋅
∂E

∂w jk

 wij = −⋅
∂E
∂wij

16

Function Approximation

1 1 1 1

1

y

x

3n+1 free parameters for n hidden units

Bumps from
which we
compose

f(x)

tanhw0w1 x

17

Encoder Problem

Input patterns: 1 bit on out of N.
Output pattern: same as input.

Only 2 hidden units: bottleneck!

Hidden
Unit 2

Hidden
Unit 1

18

5-2-5 Encoder Problem
Training patterns: Hidden code:

A: 0 0 0 0 1 0,2
B : 0 0 0 1 0 2,0
C : 0 0 1 0 0 1,−1
D : 0 1 0 0 0 −1,1
E : 1 0 0 0 0 −1,0

Hidden
Unit 2

Hidden Unit 1

One hidden unit's
linear decision boundary

A

B

CD

E

19

Flat Spots

If weights become large, netj becomes large,
derivative of g() goes to zero.

Fahlman's trick: add a small constant to g'(x) to
keep the derivative from going to zero. Typical
value is 0.1.

flat spot

g(x) g'(x)

20

Momentum

Learning is slow if the learning rate is set too low.

Gradient may be steep in some directions but
shallow in others.

Solution: add a momentum term a.

Typical value for α is 0.5.

If the direction of the gradient remains constant,
the algorithm will take increasingly large steps.

 wijt = −
∂E

∂wijt 
 ⋅ wijt−1

21

Momentum Illustration

Hertz, Krogh & Palmer figs. 5.10 and 6.3: gradient
descent on a quadratic error surface E (no neural
net) involved:

E = x2
 20y2

∂E
∂x

= 2x ,
∂E
∂y

= 40y

Initial [x , y]=[−1,1] or [1,1]

22

MNIST Dataset

● 60,000 labeled handwritten digits

● 28 x 28 pixel grayscale images

23

Recognition With a Linear Network

28 x 28
grayscale

image:
784 pixels

0
1
2
3
4
5
6
7
8
9

784 x 10
weight
matrix

10 output
classes

24

Learned Weights to Output Units

Training set performance: 89% correct.

25

TensorFlow Playground

Google's interactive backprop simulator.
 https://playground.tensorflow.org

https://playground.tensorflow.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

