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15-494/694: Cognitive Robotics

Lecture 12:
Backpropagation Learning

Image from http://www.futuristgerd.com/2015/09/10 

Dave Touretzky

http://www.futuristgerd.com/2015/09/10
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Training A Linear Unit

y=w0+w1⋅x

S

w0

x

y

w1

1
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LMS / Widrow-Hoff Rule

y is actual output, d is desired output, y-d is error.

Works fine for a single layer of trainable weights.

What about multi-layer networks?

S

wi

xi

y

Δwi = −η(y−d)xi

η  is a learning rate
(could useη=0.1)
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With Linear Units, Multiple Layers 
Don't Add Anything





U : 2×3  matrix

V : 3×4  matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x
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What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable 
weights

separating hyperplane

y = h(w0 + w1⋅x1 + w2⋅x2)
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2 layers of
trainable 
weights

convex polygon region
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3 layers of
trainable 
weights

composition of polygons:
arbitrary regions
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How Do We Train A
Multi-Layer Network?

Error = y-dy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.
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How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1
2∑

p
dp

−yp

2

Use gradient descent error minimization:

 wij = −
∂E
∂wij

Works if the nonlinear transfer function is differentiable.
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Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi xi

E =
1
2∑p

(dp
−yp

)
2 d E

d y
= y−d

∂ E
∂wi

=
d E
d y

⋅
∂ y
∂wi

= (y−d)xi

Δwi = −η
∂ E
∂wi

= −η(y−d)xixi

wi

y

How do we extend this to two layers?
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Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e−x

g 'x = gx ⋅1−gx

g x=tanhx 

g 'x=1/cosh2
x

g must be differentiable
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ReLU and GELU Functions

● ReLU: Rectified Linear Unit

● GELU: Gaussian Error Linear Unit
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Gradient Descent with Nonlinear Units

               y=g net=tanh ∑i

wi x i

dE
d y

=y−d ,      
d y

dnet
=1/cosh2

net ,      
∂net
∂wi

=xi

∂E
∂wi

=
dE
d y

⋅
d y

dnet
⋅
∂net
∂w i

= y−d/cosh2

∑i

wi x i⋅x i

tanh(Sw
i
x

i
)xi

wi y
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Now We Can Use The Chain Rule

yk

w jk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk

= yk−dk⋅g'netk 

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

=
∂E

∂netk

⋅y j

∂E
∂y j

= ∑
k  ∂E

∂netk

⋅
∂netk

∂ y j


 j =
∂E

∂net j

=
∂E
∂ y j

⋅g'net j

∂E
∂wij

=
∂E

∂net j

⋅y i
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Weight Updates

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

= k⋅y j

∂E
∂wij

=
∂E

∂net j

⋅
∂net j

∂wij

=  j⋅y i

 w jk = −⋅
∂E

∂w jk

 wij = −⋅
∂E
∂wij
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Function Approximation

1 1 1 1

1

y

x

3n+1 free parameters for n hidden units

Bumps from
which we 
compose

f(x)

tanhw0w1 x
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Encoder Problem

Input patterns: 1 bit on out of N.
Output pattern: same as input.

Only 2 hidden units:  bottleneck!

Hidden
Unit 2

Hidden
Unit 1
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5-2-5 Encoder Problem
Training patterns:            Hidden code:

A: 0 0 0 0 1 0,2
B : 0 0 0 1 0 2,0
C : 0 0 1 0 0 1,−1
D : 0 1 0 0 0 −1,1
E : 1 0 0 0 0 −1,0

Hidden
Unit 2

Hidden Unit 1

One hidden unit's
linear decision boundary

A

B

CD

E
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Flat Spots

If weights become large, netj becomes large, 
derivative of g() goes to zero.

Fahlman's trick:  add a small constant to g'(x) to 
keep the derivative from going to zero.  Typical 
value is 0.1.

flat spot

g(x) g'(x)
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Momentum

Learning is slow if the learning rate is set too low.

Gradient may be steep in some directions but 
shallow in others.

Solution: add a momentum term a.

Typical value for α is 0.5.

If the direction of the gradient remains constant, 
the algorithm will take increasingly large steps.

 wijt = −
∂E

∂wijt 
 ⋅ wijt−1
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Momentum Illustration

Hertz, Krogh & Palmer figs. 5.10 and 6.3: gradient 
descent on a quadratic error surface E (no neural 
net) involved:

E = x2
 20y2

∂E
∂x

= 2x ,    
∂E
∂y

= 40y

Initial [x , y ]=[−1,1]  or [1,1]
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MNIST Dataset

● 60,000 labeled handwritten digits

● 28 x 28 pixel grayscale images
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Recognition With a Linear Network

28 x 28
grayscale

image:
784 pixels

0
1
2
3
4
5
6
7
8
9

784 x 10
weight
matrix

10 output
classes
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Learned Weights to Output Units

Training set performance: 89% correct.
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TensorFlow Playground

Google's interactive backprop simulator.
     https://playground.tensorflow.org 

https://playground.tensorflow.org/
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