
15-494/694: Cognitive Robotics

Lecture 3:

Finite State Machines
and the cozmo_fsm
Module

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Recap

● Python's asyncio module provides an
event loop but no events.

● The Cozmo SDK provides events, actions
(with failure detection and automatic
retry), and an event dispatcher.

● But this is still cumbersome to use.
Sequencing must be hand-coded. Some
actions are asynchronous; some are not.

● Solution: cozmo-tools state machines.

3

What Is A Finite State Machine?

A classic finite state machine consists of:

● A set of discrete states {s
i
}.

● A distinguished start state s
0
.

● A set of transitions { s
i
 ® s

j
 }.

● Each transition has a condition c that
determines when the transition can
apply.

c

4

State Machines Are Graphs

● The states are nodes.
● The transitions are labeled links.

s
0

s
1

s
2

s
3

p t

rq

5

FSMs in Robot Programming

● State machines are widely used in robot
programming, from LEGO Mindstorms
(NXT-G) to ROS (Smach).

● In robotics:
– Nodes specify actions.
– Transitions specify reactions (to events).
– Events may be associated with an action,

e.g., completion or failure.
– Events can also be external, e.g., a face

appeared in the camera image.

6

Advantages of FSMs

● Separates the control logic (links) from
the functionality (nodes).

● The control logic can be expressed
concisely as a graph.

● Provides an easy way to handle control
problems such as:

– fork/join
– randomness
– timeouts

● Easy way to trace execution.

7

Event-Driven Architecture

● Robots typically use an event-driven
architecture with many types of events.

● Nodes can generate events.
● The robot's sensors can also generate

events.
● Transitions listen for events to determine

when they should fire. (Nodes can also
listen for events if they want to.)

● In cozmo_fsm, both StateNode and
Transition are subclasses of EventListener.

8

Look Turn

Reach

Wait

Transition firing activates state node Look.

9

Look Turn

Reach

Wait

Look's start() method calls StateNode's start() method.

10

Look Turn

Reach

Wait

Look's outgoing transitions become active
and begin listening for events.

11

Look Turn

Reach

Wait

Random things happen....

Event EventEvent

12

Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!

13

Look Turn

Reach

Wait

Transition decides to fire.

Event!

14

Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!

15

Look Turn

Reach

Wait

Transition activates the target node, Reach.

16

Look Turn

Reach

Wait

Transition deactivates.

17

Look Turn

Reach

Wait

Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

18

Making State Machines
● cozmo-tools programmers don't write

Python code to build state machines one
node or link at a time.

● Why not?
– It's tedious.
– It's error-prone.

● Instead they use a shorthand notation.
● The shorthand is turned into Python code

by a state machine preprocessor, genfsm.

19

Example: Drive, then Talk

Drive
forward
50 mm

Say
“Hello
there!”

Completion

20

Example: Drive, then Talk

Shorthand notation:

 Forward(50) =C=> Say(“Hello there!”)

The first defined node becomes the start.

Drive
forward
50 mm

Say
“Hello
there!”

Completion

21

Generated Code

def setup(self):

 forward1 = Forward(50)
 forward1.set_name("forward1")
 forward1.set_parent(self)

 say1 = Say('Hello there!')
 say1.set_name("say1")
 say1.set_parent(self)

 completiontrans1 = CompletionTrans()
 completiontrans1.set_name("completiontrans1")
 completiontrans1.add_sources(forward1)
 completiontrans1.add_destinations(say1)

22

The Full Source: Example1.fsm

from cozmo_fsm import *

class Example1(StateMachineProgram):
 $setup {
 Forward(50) =C=> Say('Hello there')
 }

23

genfsm Translates .fsm to .py

$ genfsm Example1.fsm

Wrote generated code to Example1.py

$ simple_cli

… startup stuff …

C> runfsm('Example1')

24

Metronome

Say
“Tick”

Say
“Tock”

5 second
timeout

5 second timeout

25

Metronome

Say
“Tick”

Say
“Tock”

5 second
timeout

5 second timeout

Shorthand:

 tick: Say('Tick') =T(5)=> tock

 tock: Say('Tock') =T(5)=> tick

26

Running Nodes from the REPL

● In simple_cli, if you type Forward(50) you
are calling a node constructor, not a
function.

● You get back a state node object.
● It doesn’t run. It’s just a state node.
● Use Forward(50).now() to run it.

– The .now() method sets up some
structures the state node needs and
then schedules it for immediate
execution in the event loop.

27

Fancy State Machines

cozmo_fsm is a hierarchical, parallel,
message passing state machine formalism:
● Hierarchical: state machines can nest.
● Parallel: multiple states can be active at

the same time.
● Message passing: transitions can

transmit information to their target
nodes.

28

“Back It Up”: Fork/Join

launcher:
StateNode

driver:
Forward
(-100,10)

finisher:
Say('Safety

First!')

speaker:
Say('beep')

Null

Completion

Completion

There can be only
one start node, so
we make it a
dummy node
(called launcher)
to transition
simultaneously to
driver and
speaker.

29

BackItUp.fsm

launcher: StateNode() =N=>
 {driver, speaker}

driver: Forward(-100, 10)

speaker: Say('Beep!') =C=> speaker

{driver, speaker} =C=>

 finisher: Say('Safety First!')

Fork

Join

30

Defining New Node Types

class Left90(Turn):
 def __init__(self, **kwargs):
 super().__init__(angle=90, **kwargs)

31

Success and Failure

class Cube1Check(StateNode):
 def start(self, event=None):

 super().start(event)

 if cube1.is_visible:
 self.post_success()
 else:
 self.post_failure()

32

Using Cube1Check

class Example2(StateMachineProgram):
 $setup {
 check: Cube1Check()
 check =S=> Say('Visible')
 check =F=> Say('Nada')
 }

33

Constructor Arguments
class CubeCheck(StateNode):
 def __init__(self, cube):
 self.cube = cube
 super().__init__()

 def start(self, event=None):
 super().start(event)
 if self.cube.is_visible:
 self.post_success()
 else:
 self.post_failure()

34

Using CubeCheck

class Example3(StateMachineProgram):
 $setup {
 check: CubeCheck(cube3)
 check =S=> Say('Visible')
 check =F=> Say('Nada')
 }

Parent class
for all your
programs.

35

Randomness

● Say can be given a list of utterances to
choose from:

Say(['hi', 'hello', 'howdy'])

● The RND transition fires immediately and
chooses one destination at random.

launch =RND=> {eeny, meeny, miney}

36

Text Messages

C> tm right

dispatch: StateNode()

dispatch =TM('forward')=> Forward(50)

dispatch =TM('right')=> Turn(-90)

37

Good Coding Style

● Node class names must begin with a
capital letter.

● Node labels must be lowercase.
● It's okay to chain nodes and transitions

together if each node has only one
outgoing transition:

 Forward(50) =C=>
 Say(“Hi there”) =C=>
 Turn(45)

38

Good Coding Style

● If a node has multiple outgoing
transitions, declare the node first, then
write each transition on a separate line.

 foo: DoSomething()
 foo =S=> Celebrate()
 foo =F=> Mourn()

39

Good Coding Style

● If overriding a parent class's __init__() or
start() method, be sure to:

– call the superclass's method at the right
time (this can be tricky)

– pass arguments if appropriate.

● If overriding start() for a node that might
be entered via multiple paths, be sure to
check self.running and return if it’s
already true, before calling the parent’s
start.

40

Defining the Start Node

The first node instance defined in the file is taken as the
start node.

Example (terrible coding style):

 apple =C=> pear =C=> apple

 pear: SpeechNode(“pear”)

 apple: SpeechNode(“apple”)

The start node will be pear, not apple, since pear is the
first node instance defined.

 don’t write code like this!

41

Nested State Machines

Doorbell has an empty start() method,
but it has a setup() method.

class Doorbell(StateNode):
 $setup {
 ding: Say('ding') =C=>
 dong: Say('dong') =C=>
 ParentCompletes()

 }
Doorbell

ding dong P

42

Nested State Machines

class Nested(StateMachineProgram):
 $setup {
 db1: Doorbell() =C=>
 bridge: Say('once again') =C=>
 db2: Doorbell()
 }

db1: Doorbell

ding dong P

db2: Doorbell

ding dong P

bridge: Say
C C

43

Tracing

Use tracefsm(level) to trace execution.

0. No tracing

1. State node start

2. State node start and stop

3. Transition firing

4. Transition start and stop

 5 – 9 are more obscure.

44

To Learn More About
State Machines

● Read the Cozmopedia articles.

● Look in cozmo-tools/cozmo_fsm/examples
for sample code.

● Read the cozmo_fsm source code.
– See nodes.py for node types.
– See transitions.py for transition types.

45

A Note About Odometry
● How does Cozmo keep track of his position?
● Simplest method: odometry.
● Wheel encoders monitor wheel turning and

accelerometers measure turns.
● Requires knowing wheel radius and encoder

resolution (degrees per tick).
● Limited accuracy due to wheel slippage.
● Error is cumulative, so odometry alone is

only good for the short term.
● In Lab 2 you'll test Cozmo's odometry.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

