
Copyright © 2003, 2005, 2020 Jennifer S. Kay. This work by Jennifer S. Kay is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/4.0/ If you intend to use this for a class, the author would
appreciate you sending her an email letting her know at kay@rowan.edu.

Introduction to Homogeneous Transformations & Robot Kinematics
Jennifer Kay, Rowan University Computer Science Department

Revised April 2020 (See also: 2005 version of paper)

1. Working with 3 Dimensional Frames in 2 Dimensions

1.1. Multiple 3-D Interpretations of a 2-D drawing
We will be working in 3-D coordinates, and will label the axes x,
y, and z. Figure 1 contains a sample 3-D coordinate frame.

Because we are representing 3-D coordinate frames with 2-D
drawings, we must agree on what these drawings mean. Clearly
the y axis in Figure 1 points to the right, and the z axis points up,
but we have to come up with a convention for what direction the
x axis is pointing. Since the three axes must be perpendicular to
each other, we know that the x axis either points into the paper,
or out of the paper.

Most people instantly assume one or the other is the case. To be
able to view both cases, it helps to look at the axes overlaid on a
cube. Consider the two views of the same cube in Figure 2. In view (a) we are looking at the cube from below,
in view (b) we are looking at the cube from above. Let’s try and overlay the 3-D coordinate frame from Figure 1
onto these two views.

Before you turn the page, make sure you can see both views of the cube in Figure 2!

Figure 2. Two views of the same
cube. The cube is missing the
front side, has a solid back and
sides, and patterned top and bot-
tom. In view a we are looking at
the cube from below, in view (b)
we are looking at the cube from
above.

x

y

z

Figure 1. A 3-D Coordinate Frame

http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:kay@rowan.edu
http://elvis.rowan.edu/~kay/papers/kinematics2005.pdf

2

Figure 3 and Figure 4 show the same two views of the cube, this time with the 3-D coordinate frame from Fig-
ure 1 overlaid onto the cube. Note that in Figure 3 the x axis points into the paper, away from you, and in Figure
4 the x axis is pointing out of the paper towards you!

Figure 3. A cube viewed from below. The edge
labelled x points into the page away from you.

Figure 4. The same cube viewed from above. The
edge labelled x points out of the page towards you.

We will use this interpretation throughout our work.
An axis pointing down and to the left will be point-
ing “out of the page.” An axis pointing up and to the
right will be pointing “into the page.”

For the purposes of this document, we will assume that Figure 4 shows the interpretation we will use. In other
words, if you see 3 axes drawn as they are in Figure 1, you should assume that the x axis points out of the paper
towards you. If you actually wanted the x axis to be pointing into the paper, you should use the illustration
shown in Figure 5.

Figure 5. In this document, we will interpret an axis that is pointing up and to the right as pointing into the
paper. Thus, in this frame, x points to the right, z points up, and y points away from you into the paper.

x

y

z

3

1.2. Right-Handed Coordinate Systems
In this document, we will use right-handed coordinate systems. In a right-handed coordinate system, if you
know the directions of two out of the three axes, you can figure out the direction of the third. Let’s suppose that
you know the directions of the x and y axes. For example, suppose that x points to the left, and y points out of
the paper, as shown in Figure 6. We want to determine the direction of the z axis. To do so, take your right
hand, and hold it so that your fingers point in the direction of the x axis in such a way that your palm is in the
direction of the y axis and you can curl your fingers towards the y axis. When your right hand is in this position,
your thumb will point in the direction of the z axis. This process is illustrated in Figure 7. The chart in figure 8
details how to compute the direction of any axis given the directions of the other two.

Figure 6. x points to the left, and y points out
of the paper towards you.

Step 1: hold your right hand in
such a way that your fingers point
in the direction of the x axis and
when you curl your fingers, they
curl towards the y axis.

Step 2: As you curl your fingers
from the x axis towards the y axis,
stick your thumb in the air. This
will be the direction of the z axis

The final 3-D coordinate system
with the z axis shown.

Figure 7. Using the right-hand rule to compute the direction of the z axis.

4

If you know the direc-
tion of these axes.

Point the fingers of your
right hand in the direc-
tion of this axis.

Curl you right fingers to-
wards the direction of
this axis.

Your thumb will point in
the direction of this axis.

x & y x y z

y & z y z x

x & z z x y

Figure 8. Using the right-hand rule to compute the direction of any axis given the directions of the other two.

1.3. Direction of Positive Rotation
Sometimes we want to talk about rotating around one of the axes of a coordinate frame by some angle. Of course,
if you are looking down an axis and want to spin it, you need to know whether you should spin it clockwise or
counterclockwise. We are going to use another right-hand rule to determine the direction of positive rotation.

To determine the direction of positive rotation for a given axis, point the thumb or your right hand along the
positive direction of the axis you wish to rotate around. The direction that the fingers of your right hand curl is
the direction of positive rotation about that axis.

(a) The original axes with a right
hand determining the direction of
positive rotation around the z
axis.

(b) After rotating the original axes
(a) 90o around the z axis.

(c) After rotating the original axes
(a) -90o around the z axis.

Figure 9. Another “right-hand rule” is used to determine the direction of positive angles. Point your right
thumb along the positive direction of the axis you wish to rotate around. Curl your fingers. The direction that
your fingers curl is the direction of positive rotation.

5

1.4. Plotting Points in 3 Dimensions
All of us have experience in plotting points on 2-D axes. When it comes to plotting points on 3-D axes, things
become a bit more difficult.

The first step is to draw tick marks on the axes to indicate scale. For the purposes of this document, we will as-
sume that each tick represents one unit. Figure 10 shows several different right-handed coordinate systems with
tick marks added. Note that each tick mark is parallel to one of the other axes. This helps the viewer to visualize
the 3-D effect.

x: out of page towards you
y: right
z: up

x: right
y: out of page towards you
z: down

x: up
y: right
z: into page away from you

Figure 10. Several different right handed 3-D coordinate frames with tick marks to indicate scale.

6

Figure 11 shows the point (2,3,4) plotted on the different axes of Figure 10. The technique is quite straightfor-
ward if two of your axes form a plane parallel with the ground. First, draw lines to indicate the projection of the
point on that plane. Then, draw a line through that point that is parallel to the remaining axis, add tick marks to
it, and plot your point.

(a) (b) (c)

Figure 11. The point (2,3,4) plotted on different axes.

For example, in Figure 11(a) the x and y axes form the groundplane, and so we draw lines to indicate where
(2,3,0) would be. Then, we draw a line through the point (2,3,0) that is parallel to the z axis, add tick marks to
it, and finally plot our point. Although Figure 11(b) looks different, the x and y axes still form the groundplane
and so the procedure is virtually the same. The only difference is that the tick marks on the z axis have been left
out because when they are included, they are difficult to distinguish from the tick marks on the vertical line that
connects to the point (2,3,4). In Figure 11 (c), the y and z axes form the groundplane. Thus, we first plot the
point (0, 3, 4), then draw a line through the point (0,3,4) parallel to the x axis, add tick marks to it, and again
plot our point (2,3,4).

7

2. Working with Multiple Coordinate Frames

2.1. Converting points from one coordinate frame to another
Our ultimate goal is to be able to move between coordinate frames with ease. Practically speaking, what does
that mean? It means that if I know the location of a particular point in one coordinate frame, I can rapidly tell
you it’s location relative to a different coordinate frame.

For example, consider an airport scenario. The coordinate frame of the airport might have its origin at the base
of the control tower, with the x axis pointing North, the y axis pointing West, and the z axis pointing up. While
this is a useful coordinate frame for the air traffic controllers to use, a pilot may be more interested in where ob-
jects are relative to her airplane. Thus, we might have two coordinate frames, “tower coordinates” and “plane
coordinates” as illustrated in Figure 12. We use subscripts to distinguish between xt, yt, and zt (the tower coor-
dinate frame) and xp, yp, and zp (the plane coordinate frame).

Figure 12. The plane is on the ground preparing for takeoff. Tower coordinates are centered at the base of the
air traffic control tower. x points North, y points West, and z points up. The airplane coordinate system is
centered at the nose of the plane. The x axis points towards the top of the plane, the y axis points out to the
right as you are sitting in the captain’s chair, and the z axis points straight out the front of the plane.

When the plane is stopped on the runway as depicted in Figure 12, the nose of the plane might be at location
(50, 5, 0) in tower coordinates, but it is at the origin (location (0, 0, 0)) in plane coordinates. Similarly, the base
of the tower is at location (0, 0, 0) in tower coordinates, but at location (0, -5, 50) in plane coordinates.

8

Note that the location of the nose of the plane is fixed with respect to the plane, but not with respect to the
tower. When the plane begins to take-off as depicted in Figure 13, its nose is still at location (0,0,0) in plane co-
ordinates, but it is at location (30, 15, 5) in tower coordinates.

Figure 13. When the plane takes-off, its nose is still at location (0,0,0) in plane coordinates, but it is at a dif-
ferent location in tower coordinates. To determine where it is in tower coordinates, the tower’s x and y axes
have been extended, and the nose of the plane has been plotted in the manner of Figure 11. Thus we see that
the nose of the plane is at location (30, 15, 10) in tower coordinates.

2.2. A very important note
While we may say we are “converting a point” from one coordinate frame to another our point does not move!
We do all of our conversions at a particular instant in time so that the relative positions of all of the coordinate
frames are fixed and the point is fixed for the calculation.

So we CAN ask questions like the following:

• Suppose that at exactly three minutes and 22 seconds after takeoff on January 1, 2020, we know the rela-
tive positions of the PHL Air Traffic Control Tower coordinate frame and the Flight ROW222 airplane
coordinate frame. Furthermore, we know that the nose of the plane is at location (0,0,0) in plane coordi-
nates. What is the location of the nose of the plane (at this exact point in time) in tower coordinates?

Yes, the nose of the plane may be continuously moving over time, but at exactly 3 minutes and 22 seconds after
takeoff on January 1st it was in one particular place and we can talk about the location of that place relative to
different coordinate frames.

9

2.3. The Use of Multiple Coordinate Frames in Robotics
It is very common in robotics to use two or more coordinate frames to solve a problem. Suppose the airplane in
Figure 12 were automatically controlled. It would be very useful to keep track of some things in tower coordi-
nates. For example, the altitude of the plane is simply the z coordinate of its location in tower coordinates. It
also would be useful to keep track of other things in airplane coordinates. For example, the direction the plane
should head to in order to avoid a mountain. Indeed, for many mobile robot applications, it is desirable to know
the locations of objects in both “world coordinates” and “robot coordinates.”

Multiple coordinate frames are also useful in traditional robotics. For example, consider the simple robot arm
depicted in Figure 14. If we want to have the gripper pick a widget up off of a table, then we need to figure out
the widget’s location. Perhaps we have a camera that we use to initially determine the location of the widget (in
camera coordinates). We might need to transform that location into world coordinates to evaluate if it is accessi-
ble to the robot at all, and to gripper coordinates to determine when we should close the jaws of the gripper.

Figure 14. A very simple robot arm with one joint and one gripper.
The world, camera, joint, and gripper coordinate frames are indicated.

10

3. Introduction to Frame Transformations

3.1. Language / Notation: Moving one frame into alignment with another
• We will call the process that moves frame w into alignment with frame r “The Frame Transformation

From w To r” .
• We will abbreviate this as:

• Important Note: this F notation was created for use in this document and is not commonly used. But
you will find it useful!!

3.2. Notation: Translating a frame by a particular (x, y, z) value
• We will represent the process of translating a frame by some combination of movement in the directions

of its x, y, and z axes by writing Trans (x,y,z)

11

3.3. A First Example
In order to figure out the location of a fixed point in a second coordinate frame given its location in another
frame, we obviously need to know the relative positions of the two frames. Let’s start with a simple example.
Consider the world and robot coordinate frames shown in Figure 15. The origin of the robot frame is located at
the point (0,3,0) in world coordinates.

Question: How could I move the w coordinate frame so that it aligns with the r coordinate frame (using w coor-
dinates as a reference?)

Answer: Translate the w frame 3 units in the direction of w’s y axis. So we would say that

 𝐹𝐹𝑤𝑤𝑟𝑟 =Trans(0,3,0)

Similarly, we could think about how to move the robot coordinate frame into alignment with the world coordi-
nate frame. In this case, we’d have to move 3 units in the negative y direction (because the robot’s y axis points
off to the right, but we want to move to the left so that’s negative) so we would say that:

 𝐹𝐹𝑟𝑟𝑤𝑤 =Trans(0,-3,0)

Figure 15. Two coordinate frames, world (w) and robot (r). The origin of the robot frame is located at the
point (0,3,0) in world coordinates.

12

3.4. A second example
The relative positions of the s and t coordinate frames are shown in Figure 16.

• Question: What is

• Answer: = Trans (5, -1, 0)

• Question: What is 𝐹𝐹𝑡𝑡𝑠𝑠?

• Answer: 𝐹𝐹𝑡𝑡𝑠𝑠 = Trans (-5, 1, 0)

Figure 16. The s and t coordinate frames differ by a translation in both the x and y directions

13

3.5. A Third Example

The relative positions of the c and m coordinate frames are shown in Figure 17. What are 𝐹𝐹𝑐𝑐𝑚𝑚and 𝐹𝐹𝑚𝑚𝑐𝑐 ?

• 𝐹𝐹𝑐𝑐𝑚𝑚 = Trans (5, -4, -1)

• 𝐹𝐹𝑚𝑚𝑐𝑐 = Trans (-5, 4, 1)

Figure 17. Two coordinate frames that differ by only a translation. To get from car coordinates (c) to moun-
tain coordinates (m) you must translate 5 units along the car’s x axis, -4 units along the car’s y axis, and -1
unit along the car’s z axis.

14

4. Representing Frame Transformations as Matrices
For reasons that will be made clear shortly, we are going to choose to represent Frame Transformations as 4x4
matrices. We will represent Trans(a,b,c) as follows:

Trans(a,b,c) = �

1 0 0 𝑎𝑎
0 1 0 𝑏𝑏
0 0 1 𝑐𝑐
0 0 0 1

�

It’s worth noting that if we changed the a, b, and c to be zeros, we would have a 4x4 identity matrix.

4.1. Examples
Just to offer a few concrete examples: For figure 15 we said:

 𝐹𝐹𝑟𝑟𝑤𝑤 =Trans(0,-3,0)

So we can now say:

 𝐹𝐹𝑟𝑟𝑤𝑤 =Trans(0,-3,0) = �

1 0 0 0
0 1 0 −3
0 0 1 0
0 0 0 1

�

Or consider the last example in Figure 17 – we said that

• 𝐹𝐹𝑐𝑐𝑚𝑚 = Trans (5, -4, -1)

So we now can say:

• 𝐹𝐹𝑐𝑐𝑚𝑚 = Trans (5, -4, -1) = �
1 0 0 5
0 1 0 −4
0 0 1 −1
0 0 0 1

�

15

5. Representing Points as Vectors
Up to this point, we have been using the traditional (x,y,z) notation to represent points in 3-D. However, for the
remainder of this document, we are going to use a vector notation to represent points. The point (x,y,z) is repre-
sented as the vector

The 1 is a weighting factor. So the vectors

 and

both represent that same point (x, y, z). Most of the time we will simply use a weighting factor of 1. Consider
the more concrete example depicted in Figure 13. The plane is at location (30, 15, 10) in tower coordinates. We
will normally represent that location as

 however it can also be represented as any of the following:

As well as an infinite number of other vectors. In order to save space in this document, we will often write the
point (x,y,z) horizontally like this: [𝑥𝑥 𝑦𝑦 𝑧𝑧 1]𝑇𝑇 , i.e. as the transpose of our vertical vector.

x
y
z
1

2x
2y
2z
2

257x
257y
257z
257

30
15
10
1

60
30
20
2

30–
15–
10–
1–

75
37.5
25
2.5

16

6. Rapidly Computing the location of points in different Coordinate Frames
At this point, if we are given two coordinate frames that only differ by a translation, we can easily compute the
frame transformation between them, for example, consider the world and robot coordinates example from Fig-
ure 15, redrawn in Figure 18 below)

The table in Figure 19 shows some sample points in world coordinates, and their corresponding values in robot
coordinates. For the moment, ignore the third column of Figure 19, and just look at the first two columns. No-
tice that any point [a b c 1]T in world coordinates is the same as the point [a (b-3) c 1]T in robot coordi-
nates.1

One way to compute the location of a point in robot coordinates given its location in world coordinates for the
system in Figure 15 is to subtract 3 from the y value in world coordinates.

More surprisingly, another way to compute the location of a point in robot coordinates given its location in
world coordinates to pre-multiply the point’s location in world by the matrix

.

The third column of Figure 19 does exactly this and results in the same answer!

1 Similarly, any point [d e f 1]T in robot coordinates is the same as the point [d (e+3) f 1]T in world coordinates.

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

Figure 18 (the same as Figure 15). Two coordinate frames, world (w) and robot (r). The origin of the robot
frame is located at the point (0,3,0) in world coordinates.

17

Location of a Point in World Co-
ordinates of Figure 15

Location of the Same Point in
Robot Coordinates of Figure 15

Pre-multiplying the point in
world coordinates by

18

Figure 19. Converting a point between world and robot coordinates as depicted in Figure 15.

7. The Homogeneous Transformation Matrix
We call the 4x4 matrix that we can use to transform a point in foo coordinates into baz coordinates the
Homogeneous Transformation from foo to baz Coordinates and we use the following notation to represent
this transformation:

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏

8. Review
It is very important to note that we have been considering two distinct concepts in our previous discussion:

1. How do move frame a in such a way that it aligns with frame b

i.e. what is 𝐹𝐹𝑏𝑏𝑏𝑏? (This is something we can often compute by just looking at the two frames)
2. How do we compute the location of a given point relative to frame a coordinates if we already know its

location relative to frame b coordinates?

i.e. what is 𝑇𝑇𝑏𝑏𝑏𝑏?

Make sure this makes sense before continuing on!!!

8.1. Strange Coincidence? Or something more …
We said the Homogeneous Transformation from world to robot coordinates for the example in Figure 19 was:

𝑇𝑇𝑤𝑤𝑟𝑟 = �

1 0 0 0
0 1 0 −3
0 0 1 0
0 0 0 1

�

But wait!!!! Go back a couple of pages. Doesn’t that matrix look familiar?? Earlier we said that:

 𝐹𝐹𝑟𝑟𝑤𝑤 =Trans(0,-3,0) = �

1 0 0 0
0 1 0 −3
0 0 1 0
0 0 0 1

�

19

So, at least for this case, it seems that 𝑇𝑇𝑤𝑤𝑟𝑟 is the same as 𝐹𝐹𝑟𝑟𝑤𝑤
In other words for this case, the Homogeneous transformation from world to robot coordinates is the same as
the Frame transformation from robot to world coordinates

8.2. Let’s see if this works on another example.
Figure 20 is a duplicate of figure 17

𝐹𝐹𝑚𝑚𝑐𝑐 = Trans (-5, 4, 1)

Figure 20. (the same as Figure 17) Two coordinate frames that differ by only a translation. To get from car
coordinates (c) to mountain coordinates (m) you must translate 5 units along the car’s x axis, -4 units along
the car’s y axis, and -1 unit along the car’s z axis.

Suppose we want to convert points from mountain coordinates to car coordinates. We’re starting to suspect that
the matrix that allows us to do that would be the same one as the Frame transformation from car to mountain
coordinates. What did we say that was?

• 𝐹𝐹𝑐𝑐𝑚𝑚 = Trans (5, -4, -1) = �
1 0 0 5
0 1 0 −4
0 0 1 −1
0 0 0 1

� Let’s try premultiplying some points in mountain co-

ordinates by 𝐹𝐹𝑐𝑐𝑚𝑚 and see what we get….

Take a look at Figure 21…. It seems to work. Of course, this isn’t proof that it will always work, but it’s prom-
ising.

20

Location of a point in Figure 17’s
mountain coordinates

Location of the same point in Figure
17’s car coordinates (computed by
just looking at it)

Pre-multiplying the point in
mountain coordinates by

Figure 21. Converting points from the mountain coordinate frame of Figure 17 to the car coordinate frame of
Figure 17.

21

9. The Relationship between F and T Transformations
OK, let’s break the suspense. It turns out that for any pair of frames, a and b, it is always the case that

𝐹𝐹𝑏𝑏𝑏𝑏 is equal to 𝑇𝑇𝑏𝑏𝑏𝑏

We know how to figure out that 4x4 matrix for frame transformations that differ only by a translation. Let’s
keep going and understand what we need to do if we also have some rotations.

10. Coordinate Frames that Differ by a Rotation Around the Z Axis
Consider the two frames depicted in Figure 22. By looking at Figure 22(a), we can see that xk = yj, zk = zj, and
xj = -1*yk. Let’s look at a few example points:

• The origin of the j axis in j coordinates: the point (0,0,0) (aka [0 0 0 1]T) is the same as the origin of
the j axis in k coordinates (0,0,0).

• The point (a,b,c) in j coordinates is located at (b, -a, c) in k coordinates.

How do we align the k coordinate frame with the j coordinate frame (i.e. what is 𝐹𝐹𝑘𝑘
𝑗𝑗

) ? We, if we look at the
axes, we can see that we would need to perform a rotation about k’s z axis by -90o. (use your right hand to con-
firm that it really is negative 90o!)

Is there a generic matrix that we can use for rotations about the z axis? Of course!

Rot z (θ) = �

𝑐𝑐𝑐𝑐𝑐𝑐(θ) −𝑐𝑐𝑠𝑠𝑠𝑠(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

�

So that would mean that Rotz(-90o) = �
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

�

22

(a) the j and k coordinate frames over-
laid on each other.

(b) the j coordinate frame, shown
on its own for clarity.

(c) the k coordinate frame,
shown on its own for clarity.

Figure 22. Two coordinate frames, j and k, that differ only by a rotation about the z axis. To transform the k
coordinate frame into the j coordinate frame, we rotate by -90o about k’s z axis.

Let’s use that matrix! When we compute the matrix product of our matrix with [0 0 0 1]T, we get
[0 0 0 1]T as expected. compute the matrix product of our matrix with [a b c 1]T, we get [b -a c 1]T as ex-
pected.

At this point we know that we can design a matrix to convert points between two coordinate frames that only
differ by a translation, or by a rotation about the z axis. It should not surprise you to learn that you can also de-
sign matrices to convert points between two coordinate frames that only differ by a rotation about the x or y
axes too.

A summary of all of these matrices can be found in figure 23.

23

If to align the k coordinate frame
with the j coordinate frame you
have to:

Then to convert a point in j coor-
dinates into a point in k coordi-
nates, premultiply that point by:

The nickname for this transfor-
mation is:

Translate
• along k’s x axis by a
• along k’s y axis by b
• along k’s z axis by c

Trans (a, b, c)

Rotate about k’s x axis by θ

Rot x (θ)

Rotate about k’s y axis by θ

Rot y (θ)

Rotate about k’s z axis by θ

Rot z (θ)

Figure 23. Summary of transformation matrices

24

11. Combining multiple transformations
So far we have learned how to create the matrix that will compute the coordinates of a point in one coordinate
frame given the coordinates of that point in another coordinate frame, subject to the following condition: the
two frames may only differ by a translation (along the 3 axes), or by a rotation about a single axis. It is indeed
possible to convert points between two coordinate frames that differ, perhaps by two translations, or by a rota-
tion then a translation and then another rotation.

The key to understanding how to do this is to understand that there are two approaches to view any sequence of
translations and rotations. Both approaches give you the same final result, but sometimes one is easier than the
other. We’ll discuss each one separately. The first way is known as using a “moving axis” approach and the sec-
ond is called using a “fixed axis” approach.

11.1. The moving axis approach
In moving coordinate systems, each step happens relative to the steps that have come before it. For example,
Figure 24 shows the world and gripper coordinate frames for a particular robotic system. Note that not only is
the gripper coordinate frame translated from the world coordinate frame, but there also must be some sort of
rotation that caused the gripper’s x axis to point up instead of out of the page towards you as the world coordi-
nates do.

In the “moving axes” approach, we say that to get from world coordinates to gripper coordinates (𝐹𝐹𝑤𝑤
𝑔𝑔

), you
need to do the following sequence of moves:

1. Rotate about xw by -90 degrees. Call this new frame intermediate frame 1, and we’ll call its axes x1, y1,
and z1.

2. Rotate about the new z1 by -90 degrees. Call this new frame intermediate frame 2, and we’ll call its axes
x2, y2, and z2.

3. Translate by (0,0,5) relative to intermediate frame 2. This results in the gripper coordinate frame.

6.7 Computing the Transformation Matrix Using Moving Axes

Figure 24. World and gripper coordinate frames for some robot. There are several ways we can think about
transforming between the two coordinate frames.

25

When we use “moving axes” we list the moves that we did from left to right, compute the individual matrices
for each part, and then multiply them together. For example, in this situation, we did the following steps:

1. Rot x (-90)
2. Rot z (-90)
3. Trans (0,0,5)

So, listing our equations from left to right we have:

Rot x(-90) * Rot z(-90) * Trans(0,0,5) =

The resulting matrix, 𝐹𝐹𝑤𝑤
𝑔𝑔

 , will transform a point from gripper coordinates to world coordinates (i.e., it’s also

𝑇𝑇𝑔𝑔𝑤𝑤). For example, consider the point (1, 2, 3) in gripper coordinates. We compute that in world coordinates by
premultiplying by our new matrix as follows:

Which you should be able to verify is correct by looking at Error! Reference source not found..

1 0 0 0
0 0 1 0
0 1– 0 0
0 0 0 1

0 1 0 0
1– 0 0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 5
0 0 0 1

0 1 0 0
0 0 1 5
1 0 0 0
0 0 0 1

=

0 1 0 0
0 0 1 5
1 0 0 0
0 0 0 1

1
2
3
1

2
8
1
1

=

26

11.2. Using Fixed Axes
The alternative approach is the “fixed axes” approach. In this technique, all of your moves are relative to the
original world coordinate frame. In the “fixed axes” approach, the picture is still as depicted in Figure 24, but
this time the sequence of steps is:

1. Rot x(-90) (about the world’s x axis)
2. Rot y (-90) (about the world’s y axis)
3. Trans(0,5,0) (relative to the (x, y, and z directions specified by the world’s axes)

When we using “fixed axes” computation, (i.e. each new rotation is relative to the original coordinate frame),
we list our equations from right to left. So the above sequence of steps turns into

Trans (0,5,0) * Rot y (-90) * Rot x(-90)

The matrices for this product are as follows:

Check it out! this is the same equation we got when we did the computation using moving axes! (Phew!)

1 0 0 0
0 1 0 5
0 0 1 0
0 0 0 1

0 0 1– 0
0 1 0 0
1 0 0 0
0 0 0 1

1 0 0 0
0 0 1 0
0 1– 0 0
0 0 0 1

0 1 0 0
0 0 1 5
1 0 0 0
0 0 0 1

=

27

11.3. Fixed Axes: IMPORTANT WARNING
Rotations can get very complicated when you are using a fixed axis approach if your current axes do not share
the same origin as the original axes that you are rotating about.

For example, consider the axes of Figure 25 and suppose you want to rotate the w frame by -90 degrees about
the g’s y axis. The rotation is depicted in Figure 26 is not what one might expect! To visualize what is happen-
ing, you need to imagine that the two frames are locked together as you perform the rotation.

Figure 25. Two coordinate frames.

Figure 26. A rotation of the original w coordinate frame from Figure 25 (shown as dotted arrows) about the yg
coordinate frame from Figure 25.

28

12. Forward Kinematics
One task that we often wish to do is the following: given the joint angles of a robot arm, compute the transfor-
mation between world and gripper coordinates. Of course, at this point given any fixed joint angles, we already
have the tools to compute this transformation. However, what we really would like to do is to come up with a
transformation matrix that is a function of the joint angles of the robot.

12.1. A First Example
Consider the robot arm given in Figure 27. This arm has two links (of length L1 & L2) and one joint which can
rotate about its Z axis. There are 3 coordinate frames, world coordinates, joint coordinates, and gripper coordi-
nates. Figure 28 contains a picture of the same arm, but this time, the joint has been rotated by 30 degrees
(about its z axis - the only axis about which it can rotate).

Now look at the * in both figures. It should be clear that the world coordinates of the * do not change between
Figure 27 and Figure 28, but the location of * in link coordinates does change, as does its location in gripper
coordinates.

There is one point in this image whose location does not move in any frame as the joint moves. The point lo-
cated at the very center of the joint (i.e. with Joint coordinates (0,0,0)) is always at world coordinates location
(L1, 0, 0), and always at (-L2, 0, 0) in gripper coordinates, no matter how you move the joint.

Suppose that we want to be able to convert between gripper coordinates and world coordinates, as a function of
the angle of the joint.

Figure 27. A simple robot

29

Figure 28. The arm from Figure 27 with the joint rotated by 30 degrees.

Let’s begin by just looking at Figure 27 again and considering the case where the joint is not rotated at all. In
this case, to convert a point from gripper coordinates to world coordinates all we do is add L1+L2 to whatever
the x value is. e.g., suppose the * is located at (4, 3, 0) in gripper coordinates. Then it’s obviously located at
(4+L1+L2, 3, 0) in world coordinates.

But wait! To convert from gripper to world coordinates isn’t as simple as that. Because if the joint is rotated as
shown in Figure 28, then it’s no longer a simple addition of L1+L2.

What we want is a way to easily convert between gripper and world coordinates as a function of joint angle.
Let’s call the angle that the joint is rotated ψ. We want one matrix that has the variable ψ built into it, and if we
plug in the value for ψ, that matrix will be our matrix that we multiply a point in gripper coordinates by to get
the point in world coordinates.

Now let’s do the math. To move our frame from world coordinates to gripper coordinates, we need to translate a
distance of L1 along the x axis, and then rotate by whatever angle our joint is twisted to (e.g. 0 degrees in Fig-
ure 27 or 30 degrees in Figure 28). We’re going to do it as relative motion, so we end up multiplying the matri-
ces Trans(L1, 0, 0) by Rot z (ψ) from left to right. So we have the following:

Figure 29. Performing a frame transformation from world coordinates to joint coordinates

30

But of course, this only moves us from world coordinates to joint coordinates. We wanted to move our frame
from world coordinates to gripper coordinates. Once we have a frame in joint coordinates, moving it to gripper
coordinates is simply a translation of [L2, 0, 0]. So we need to multiply the two matrices above by
Trans[L2, 0, 0].

Figure 30. Performing a frame transformation from world coordinates to gripper coordinates.

Now, our final equation looks pretty messy, but it’s not too bad. Suppose that ψ is 0 (i.e. we’ve got Figure 27).
Then we have:

Figure 31. Performing a frame transformation from world coordinates to gripper coordinates when the joint
angle is zero

Remember that we computed how to transform a frame from world coordinates to gripper coordinates. Which
turns points in gripper coordinates into points in world coordinates.

Wow! Figure 31 is actually exactly what we predicted it would be. Look at it. It’s the matrix
Trans(L1+L2, 0, 0).

12.2. A Second Example
Just for fun, let’s compute the transformation when the joint is rotated by 90 degrees, so the gripper is pointing
straight up in the air. Well, we plug in 90 degrees for ψ and we get:

31

Figure 32. Performing a frame transformation from world coordinates to gripper coordinates when the joint
angle is 90 degrees

Does this make sense? Think about it. Suppose that you have a point that is located right at the origin of the
gripper. So in gripper coordinates, it’s location is (0,0,0). Where is that in world coordinates? Let’s multiply:

Figure 33. Transforming a point from gripper coordinates to world coordinates when the joint angle is 90 de-
grees

Hey, it works!

32

13. Some Tips on Using Mathematica
Clearly it’s a major pain to do anything with more than one or two manipulations by hand. Mathematica can
really help. Here are a couple of hints on how I computed the information for this document. I’m assuming
some familiarity with the very basics of Mathematica.

For starters, I wrote Mathematica functions to represent each of the rotation and translation matrices. Just in
case you haven’t seen a Mathematica function before, here’s how you write a function that takes to variables, a
and b, and returns the mean (average) of a and b (note: the underscore defines what’s a variable. Don’t use un-
derscores for anything else or you’ll have problems with your code:

Matrices are represented as lists of lists. So, here is my function for Rotx:

Remember that Mathematica uses radians. So to Rotx by 90 degrees I say

Now, let’s use this function. If I want, I could run my function to see what the matrix is to Rotate x by 0 (this
should be the identity matrix, right?!) (Note: From this point onwards, I’ll show you the “in” and “out” mes-
sages from Mathematica so you can distinguish my input from its output)

Hmmm, correct, but not really very pleasing to the eye. We can use the built-in MatrixForm function to display
matrices with a little more beauty:

In[2]:= Rotx[0]

Out[2]= {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

33

So what do we get when we rotate about x by Pi/2?:

Looking good!

8. References
Much of this tutorial is derived from “Essential Kinematics for Autonomous Vehicles” by Alonzo Kelly, Carne-
gie Mellon University Robotics Institute technical report number CMU-RI-TR-94-14, May 1994, available on
the web at https://www.ri.cmu.edu/publications/essential-kinematics-for-autonomous-
vehicles/

14. Acknowledgements
Many thanks to Alison English for helping to convert the 15-year-old document in FrameMaker format into a
form that I could actually edit!

Copyright © 2003, 2005, 2020 Jennifer S. Kay. This work by Jennifer S. Kay is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/4.0/ If you intend to use this for a class, the author would
appreciate you sending her an email letting her know at kay@rowan.edu.

https://www.ri.cmu.edu/publications/essential-kinematics-for-autonomous-vehicles/
https://www.ri.cmu.edu/publications/essential-kinematics-for-autonomous-vehicles/
http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:kay@rowan.edu

	1. Working with 3 Dimensional Frames in 2 Dimensions
	1.1. Multiple 3-D Interpretations of a 2-D drawing
	1.2. Right-Handed Coordinate Systems
	1.3. Direction of Positive Rotation
	1.4. Plotting Points in 3 Dimensions

	2. Working with Multiple Coordinate Frames
	2.1. Converting points from one coordinate frame to another
	2.2. A very important note
	2.3. The Use of Multiple Coordinate Frames in Robotics

	3. Introduction to Frame Transformations
	3.1. Language / Notation: Moving one frame into alignment with another
	3.2. Notation: Translating a frame by a particular (x, y, z) value
	3.3. A First Example
	3.4. A second example
	3.5. A Third Example

	4. Representing Frame Transformations as Matrices
	4.1. Examples

	5. Representing Points as Vectors
	6. Rapidly Computing the location of points in different Coordinate Frames
	7. The Homogeneous Transformation Matrix
	8. Review
	8.1. Strange Coincidence? Or something more …
	8.2. Let’s see if this works on another example.

	9. The Relationship between F and T Transformations
	10. Coordinate Frames that Differ by a Rotation Around the Z Axis
	11. Combining multiple transformations
	11.1. The moving axis approach
	11.2. Using Fixed Axes
	11.3. Fixed Axes: IMPORTANT WARNING

	12. Forward Kinematics
	12.1. A First Example
	12.2. A Second Example

	13. Some Tips on Using Mathematica
	14. Acknowledgements

