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Density Estimation

 Parametric approaches require us to assume a 
particular distribution function, e.g., gaussian.

 The real data may not fit any one simple distribution.

 Non-parametric approaches use the data itself to 
estimate density, e.g., by histogramming (Parzen 
windows).

 Expensive; requires us to store all the data points.

 Mixture models offer a compromise approach:

 Model the data as a mixture of several parameterized 
distributions.
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A Simple Mixture Model

We can model a dataset as a collection of points 
generated by a mixture of Gaussians.

 j mean
 j standard deviation
 j weight/prevalence/prior probability

∑j

 j = 1, so  j = P c j
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Gaussian Generators 
Form a Mixture

Class priors P j = P (c j)    (mixture coefficients)

∑
j

P j = 1

Density distribution p(x ) = ∑
j

P j⋅exp [−(x−μ j)
2

σ j
2 ]

Generator
for c3

Generator
for c2

Generator
for c1
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Probability Densities

P j = prior probability of class c j

 so  ∑
j

P  j = 1

Probability density of the mixture:

px  = ∑
j=1

M

px∣jP j

Posterior probability:

P  j∣x =
px∣jP j

px

so  ∑
j

P j∣x  = 1
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Conditional Density

Assume covariance matrix is diagonal with equal 
elements.  Then:

How can we determine the “most probable” values 
of μj and σj and P(j), given the dataset {xi} ?

p x∣j =
1

2 j
2

d /2 ⋅ exp{−∥x− j∥

2

2 j
2 }

normalization
term
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Likelihood of a Dataset

What is the likelihood L that a dataset {x
i
} was 

generated by a given mixture model?

p xi = ∑
j=1

M

p xi∣ j ⋅ P j

p{xi} = ∏
i=1

n

pxi = L
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Log Likelihood

For gradient descent, we want a sum, not a product, 
because the derivative of a product is messy.  So take 
the negative log.

E = −log L = −∑
i=1

n

logpx i

= −∑
i=1

n

log {∑
j=1

M

pxi∣jP  j}
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Gradient Descent on E

E = −∑
i=1

n

logpxi = −∑
i=1

n

log ∑
j=1

M

pxi∣jP  j
∂E
∂ j

= −∑
i=1

n

 1
pxi

⋅ ∑
k=1

M

P k 
∂

∂ j

pxi∣k 

= −∑
i=1

n

 1
pxi

⋅ pxi∣jP j ⋅
∥xi− j∥

 

= −∑
i=1

n

P j∣xi ⋅
∥xi− j∥
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Gradient Descent (cont.)

E = −log L  is our error function.

Do gradient descent on E:

∂E
∂ j

= −∑
i=1

n

P  j∣xi ⋅
∥x i− j∥

 j
2

∂E
∂ j

= ∑
i=1

n

P j∣xi ⋅ { d
 j

−
∥x i− j∥

2

 j
3 }
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Constrained Gradient Descent

There's a problem:

We can't just nudge μi and σj around by small amounts,
since their values affect P(j).

Must satisfy these constraints:

∑
j=1

M

P  j = 1

0  P j  1
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The EM Algorithm
(Expectation-Maximization)

Iterative algorithm for optimizing  j  and  j,
and P j to minimize E.

Definitions:

P ji = P  j∣xi =
P xi∣j ⋅ P  j

pxi

Class priors:

P  j = P j =
1
N
∑
i=1

N

P ji

px = ∑
j=1

M

px∣j⋅P j
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Expectation (E) Step

Calculate P ji for all points i and gaussians j,

using current parameter values  j ,  j
2 , and P j .
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Maximization (M) Step

P j 
1
N
∑
i=1

N

P ji

 j 

∑
i

P ji⋅xi

∑
i

P ji

=

∑
i

P ji⋅xi

P j

 j
2


1
d∑i

P ji⋅∥xi− j∥
2

P j

Repeat E and M steps until convergence.
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EM Finds a Local Minimum in E
(or Local Maximum in L)

∂E
∂ j

= 0 = −∑
i=1

n

P  j∣xi⋅
∥xi− j∥

 j
2

 j∑
i=1

n P  j∣xi

 j
2

=

∑
i=1

n

P  j∣xix i

 j
2

 j =

∑
i=1

n

P  j∣x ixi

∑
i=1

n

P  j∣x i

 j  is the weighted mean
of the xi 's credited to
the jth mixture component.
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EM Demo

EmDataSet =4

emdemo
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EM Demo

EmDataSet = 3

emdemo
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Cheapo Heuristic

Not as good as split/merge (defined later), but easy to 
program:

If a component captures fewer than 1/(2M) points, 
reset its μ to a random xi and recalculate its σ2.

Assumes the P(j) values are roughly equal.

EmHeuristic = 1

emdemo
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Characteristics of EM

 Learns in a small number of iterations.

 Can get stuck in local minima.

 But you can add heuristics to help unstick the algorithm.

 Must decide in advance how many Gaussians.
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Williamson:  Gaussian ARTMAP

1. Use an RBF network to do pattern classification:

Each unit votes for one class.  Tally votes from all 
active units.  The class with the most votes wins.
No LMS training.

2. Use a variant of EM to train the gaussians.

1 1 1 1

class labels
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“Match Tracking” in ARTMAP

Establish a match threshold r.

Units count as “active” only if 

All other units are reset to zero; they do not vote.

If the network guesses the wrong class, increase r 
slightly and try again.

If r gets too high and all units are reset, then add a 
new unit to  handle this data point.

Pxi∣j  .
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Performance of Gaussian ARTMAP

Note: EM is a batch (offline) learning algorithm.
Guassian ARTMAP uses an online variant.

Did well on several tasks:

 Letter image classification

 Landsat satellite image segmentation

 Speaker-independent vowel recognition

Match tracking helps Gaussian ARTMAP outperform 
EM by “backpropagating” the effects of erroneous 
classifications.



23

Offline Calculation of μ and σ2

 = 〈x〉


2
= 〈x−2〉

= 〈x2
− 2x  

2
〉

= 〈x2
〉 − 2 〈x 〉  〈

2
〉

= 〈x2
〉 − 22

 
2

= 〈x2
〉 − 〈x〉2



24

On-line Calculation of μ

n =
1
n
∑
i=1

n

x i

n1 =
n⋅n  xn1

n1

=
n

n1
n 

xn

n1

= 1− 1
n1 n 

1
n1

xn1
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On-line Calculation of σ2

n
2

=
1
n
∑
i=1

n

xi−n 
2

n1
2

= 1− 1
n1 n

2


1
n1 xn1−n1

2

n
2  is slightly biased because n  changes,

but the effect is not significant.
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Split and Merge EM
(Ueda, Nakano, Gharamani, and Hinton)

 Split a component if it does a poor job estimating the 
local density.

 Example: a component stuck between two clusters will 
have low density near its mean and high density near 
the true cluster centers.

 To split, make two copies, and perturb each one away 
from the mean by a small amount.
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Split and Merge EM (cont.)

 Merge two components if their parameters are close.
Set the merged component's parameters to the 
weighted average.

 Combine one merge step with one split step, so the 
number of mixture components M stays the same.
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Combined Split and Merge Steps

Old components:              i          j         k     ...

New components:                 i'         j'         k'    ...

Run a mini-EM step to adapt elements i', j', and k'.
Then run full EM to asymptote.

If overall likelihood is not improved, undo the 
split/merge and try a different set of candidates.

Candidates are ranked heuristically; only need to look 
at about 5.

merge

split
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When To Merge

Define Pi 
*
 = 〈P i∣x1 ;*

 , ,Pi∣xN ;*
〉

T

Merge criterion:

Jmerge i , j ;*
 =

Pi 
*

T P j

*


∥Pi 
*
∥ ∥P j

*
∥

Jmerge will be high if the vectors Pi 
*
 and P j

*
 point in roughly

the same direction, meaning their gaussians capture roughly
the same set of points.

Choose candidate pairs (i,j) to give the highest value of Jmergei , j ;*
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When To Split

Estimate the local density of kth model around x:

f k x ;*
 =

∑
n=1

N

 x−xnPk∣xn ;*


∑
n=1

N

P k∣xn ;*


where   is the empirical density distribution.

Check Kullback-Leibler divergence of local data density estimate f k

with density  pk  of kth model as specified by current parameter

estimate * :

Jsplit k ;*
 = ∫ f k x ;*

 log
f k x ;*



pk x ;*

dx

A large value of Jsplit  suggests that model k has a poor estimate
of local density, so splitting it might be helpful.
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Performance of SMEM
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Factor Analyzers

● More complex approach than EM.

● Able to handle high-dimensional data with low-
dimensional embedded structure. 
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Mixture of Factor Analyzers

Project high-D space down to lower-D space.  Compute 
a mixture of low-D functions.
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Image Compression & Reconstruction

PCA = Principal 
Components Analysis

MFA = Mixture of Factor 
Analyzers

SMEM = Split/Merge EM
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