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Outline

● Probabilistic Robotics

● Belief States

● Parametric and non-parametric representations

● Motion model

● Sensor model

● Evaluation and resampling

● Demos
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Probabilistic Robotics

● The world is uncertain:

– Sensors are noisy and inaccurate.

– Actuators are unreliable.

– Other actors can affect the world.

● Embrace the uncertainty!

● How?

– Explicitly model our uncertainty about sensors and actions.

– Replace discrete states with beliefs: probability 
distributions over states.

– Use Bayesian filtering to update our beliefs.
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Beliefs      

Figures from Thrun, Burgard, and Fox (2005) 
Probabilistic Robotics

are probability distributions
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Some Notation

● x
t
 = state at time t

● u
t
 = control signal at time t

● z
t
 = sensor input at time t

● We don't know x
t
 with certainty; we have an a priori  

(before measurement) belief bel(x
t
) about it:

bel(x
t
) = p(x

t
 | z

1:t-1
, u

1:t
)

● New sensor data z
t
 updates our belief, giving an a 

posterior belief bel(x
t
):

bel(x
t
) = h p(z

t
 | x

t
) · bel(x

t
)
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Parametric Representations (1)

● Represent a probability distribution using an analytic 
function described by a small number of parameters.

● Most common example: Gaussian
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Parametric Representations (2)

● Good points:

– Compact representation: just a few numbers
● For a Gaussian: mean m and variance s2

– Fast to compute

– Nice mathematical properties

– Easy to sample from

● Drawbacks:

– May not match the data very well

– Can give bad results if the fit is poor
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Nonparametric Representations

● No preconceived formula for the distribution.

● Instead, maintain a representation of the actual 
distribution, via sampling.

● Example: histogram

● Good points:

– Can represent completely
arbitrary distributions

● Drawbacks:

– Requires more storage

– Expensive to update
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Where Is The Robot?

● Parametric:  the robot is at x=1 with s2 = 0.2

● Non-parametric: 100 samples indicating robot position.
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Where Is The Robot?

● Parametric: fail (or put robot at the mean: x=2.5)

● Non-parametric: 100 samples.
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Particle Filters

● A particle filter is an efficient non-parametric 
representation of a distribution.

● Each particle represents a sample drawn from the 
distribution.

● As the distribution changes, we update the particles.

● Three kinds of updating:

– Change the value the particle encodes (motion model).

– Change the weight assigned to the particle (sensor model).

– Resample the distribution, getting a fresh set of particles 
with initially equal weights.
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Bayesian Filter, part 1

● Our belief about the robot's position at time
t-1 is a probability distribution p(x

t-1
), which we 

represent as a set of samples.

● At time t the robot moves, following some control signal 
u

t
, producing a new distribution p(x

t
).

● A motion model defines how our new prediction bel(x
t
) 

arises from applying u
t
.

bel (x t) = ∫ p (x t∣x t−1 ,ut )⋅bel(x t−1) d x t−1
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Why Are We Integrating?

bel (x t) = ∫x t−1

p(xt∣x t−1 , ut)⋅bel (x t−1) d xt−1

Probability of 
arriving at x

t
 given 

that we were 
previously at x

t-1
 

and got control 
signal u

t
.

Integrated over all possible starting locations x
t-1

.

Belief that we
were previously 
at location x

t-1

All 
possible 
previous 
locations 

x
t-1
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Motion Models

● Motion models express the noisiness of motion u
t
.

● Typically use a simple parametric distribution.

– Easy to sample.

● We represented the distribution p(x
t-1

) as a set of a 

posteriori samples bel(x
t-1

). Motion gives us bel(x
t
).

● How do we sample bel(x
t
) ?

● Solution: for each sample in bel(x
t-1

), draw a value from 

the motion model's distribution and add it to the 
sample value.
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Motion Model p(x
t
|x

t-1
,u

t
)

  Moderate                         High                           High
Noise  Values                Translational               Rotational
                                     Uncertainty                Uncertainty

Figures from Thrun, Burgard, and 
Fox (2005) Probabilistic Robotics
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Robot at t=0: bel(x
0
)
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Prediction at t=1: bel(x
1
)
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Robot at t=0: bel(x
0
)
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Prediction at t=1: bel(x
1
)
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Prediction at t=2: bel(x
2
)
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Correcting Our Prediction

● To mitigate the noisiness of our motion model, we use 
sensor readings z

t
 to correct our belief distribution.

● Our sensors give us a probability distribution p(x
t
|z

t
).

● Can't our sensors just tell us where we are?

● NO!

– They're noisy.

– An individual reading may not be that informative because 
the world can be ambiguous (e.g., doors look alike).

– Need to combine information.
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Sensor Model

● We should try to model uncertainty in our sensor data.

● Lots of work on sonar and laser rangefinder noise 
models (e.g., effects of reflections, viewing angle, etc.)

● For visual landmarks:

– Effects of camera resolution.

– Distance estimates might have variance proportional to the 
distance value (larger distances have higher variance).

– Bearing estimates might have variance inversely 
proportional to distance.
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Interlude: The Kalman Filter
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Slide modified from Burgard et al., “Introduction to Mobile 
Robotics”, 2014, lecture 9: “Bayes Filter – Kalman Filter”.

bel(x
1
)

bel(x
1
)

p(x
1
|z

1
)

If distributions are gaussians, we can combine them using a 
Kalman filter. Weighting is inversely proportional to variance.

(prior)

(posterior)
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Slide modified from Burgard et al., “Introduction to Mobile 
Robotics”, 2014, lecture 9: “Bayes Filter – Kalman Filter”.

p(x
2
|z

2
)

bel(x
2
)

bel(x
1
)

bel(x
2
)

Second iteration: prior belief → prediction → measurement → correction.

motion
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Product of Two Gaussians

μ3 =
μ1σ2 + μ2σ1

σ1+σ2

σ3 =
σ1⋅σ2

σ1+σ2
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Bayesian Filter, part 2

From part 1:
bel (x t) = ∫x t−1

p(x t∣x t−1 ,ut)⋅bel (x t−1) dx t−1

Sensor reading zt  gives distribution p(x t∣zt) .

Corrected: bel(x t) = η p(z t∣x t) ⋅ bel (xt)

η  is a normalization constant.



28

But How Do We Correct
Our Beliefs If We’re Using

Particles to Represent
the Distribution?
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Corrected Sampling 
Representation

● Prior distribution bel(x
t
) is “corrected” by weight p(z

t
|x

t
) 

to give posterior bel(x
t
).

● The weighted particles are a sampling representation of 
the new distribution p(x

t
).

● The robot can move around and we can move the 
particles and update their weights.

● But is this a good representation?

● Particles whose weights become low aren't representing 
useful hypotheses. Eventually the representation falls 
apart because we're sampling the wrong regions.
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Resampling

● Things break down when too many particles are 
representing the wrong regions of bel(x

t
), so their 

weights are low.

● We can fix this by resampling bel(x
t
), giving a fresh set 

of particles distributed correctly.

● But we have no formula for bel(x
t
), and no direct 

representation of it.

● So how do we sample from it?

– Importance sampling.
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Sampling a Function y=g(x)
From an Arbitrary Distribution x

Figure slightly modified from Thrun, Burgard, and Fox 
(2005) Probabilistic Robotics.

Steep slope,
so nearby x votes

are distributed
 across many

y values.
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Importance
Sampling

● Want to sample from f.

● Can only sample from g.

● Weight each sample
by f(x) / g(x).

● The weighted samples
approximate f.

● g is bel(x
t
)

● Weighting comes from p(z
t
|x

t
)

● Drawing from weighted sample
gives bel(xt)

Figure from Thrun, Burgard, and 
Fox (2005) Probabilistic Robotics
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Resampling: Drawing From 
Weighted Samples

● We don't need to resample on every time step t. We 
can accumulate sensor data for several time steps, so 
our weights are more accurate.

● We can also use the weights to estimate the robot's 
location (if  the distribution is unimodal):

● When to resample?

– If the variance on the weights is high, then many particles 
are representing non-useful portions of the space.

– Resampling redistributes the particles so they are 
concentrated where the probability density is highest.

x̂(t ) = ∑i
w t

(i)
⋅xt

(i)
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How To Resample

● Stochastic universal sampling is a trick for drawing 
samples from a weighted distribution as fairly as 
possible (low variance sampling).

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014, 
lecture 12: “Bayes Filter – Particle Filter and Monte Carlo Localization”.

3 samples 8 samples (equal spacing instead of 
independent sampling lowers the variance)
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Weighting in a Corridor

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014, 
lecture 12: “Bayes Filter – Particle Filter and Monte Carlo Localization”.
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Moving and Then Resampling

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014, 
lecture 12: “Bayes Filter – Particle Filter and Monte Carlo Localization”.
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Sensing and Weighting

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014, 
lecture 12: “Bayes Filter – Particle Filter and Monte Carlo Localization”.
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Moving and Then Resampling

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014, 
lecture 12: “Bayes Filter – Particle Filter and Monte Carlo Localization”.
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Summary

● Particle filters are the preferred method for robot 
localization in the real world.

● Robot pose typically encoded as (x,y,q).

● A map is needed to define how sensor values indicate 
locations. But what if we don't have a map?

● Particles can be used to represent hypotheses about 
the map as well as about the robot's location.

– SLAM: Simultaneous Localization and Mapping.

– We'll explore this in a later lecture.
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