15-494/694: Cognitive Robotics Dave Touretzky

Lecture 5:

Particle Filters and Localization

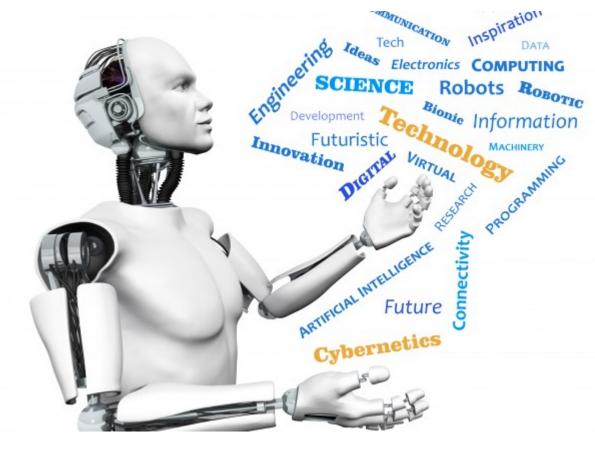


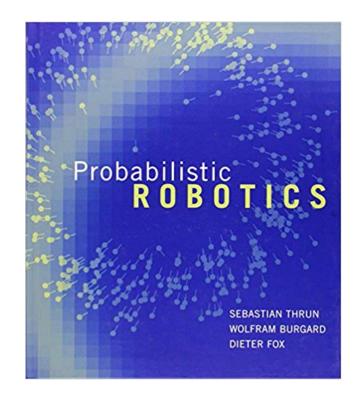
Image from http://www.futuristgerd.com/2015/09/10

Outline

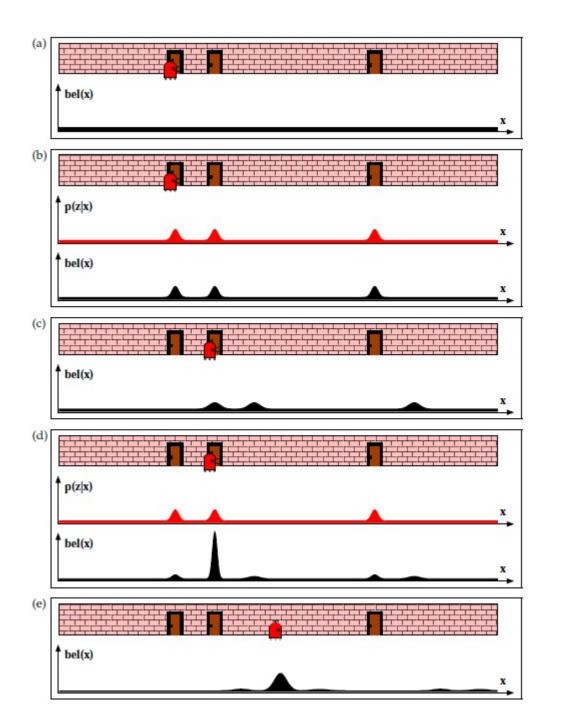
- Probabilistic Robotics
- Belief States
- Parametric and non-parametric representations
- Motion model
- Sensor model
- Evaluation and resampling
- Demos

Probabilistic Robotics

- The world is uncertain:
 - Sensors are noisy and inaccurate.
 - Actuators are unreliable.
 - Other actors can affect the world.
- Embrace the uncertainty!

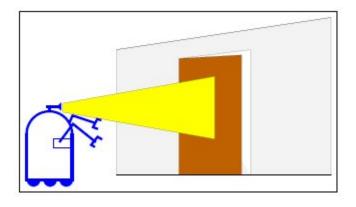


- How?
 - Explicitly *model* our uncertainty about sensors and actions.
 - Replace discrete states with beliefs: probability distributions over states.
 - Use Bayesian filtering to update our beliefs.



Beliefs

are probability distributions



Figures from Thrun, Burgard, and Fox (2005) Probabilistic Robotics

Some Notation

- $x_t = state at time t$
- $u_t = control signal at time t$
- $z_t = sensor input at time t$
- We don't know x_t with certainty; we have an *a priori* (before measurement) belief bel(x_t) about it:

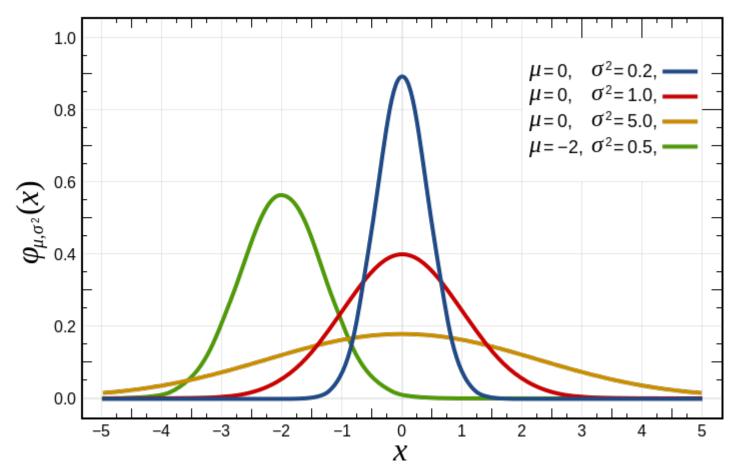
$$\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$$

New sensor data z_t updates our belief, giving an a posterior belief bel(x_t):

$$bel(x_t) = \eta p(z_t | x_t) \cdot \overline{bel}(x_t)$$

Parametric Representations (1)

- Represent a probability distribution using an analytic function described by a small number of parameters.
- Most common example: Gaussian

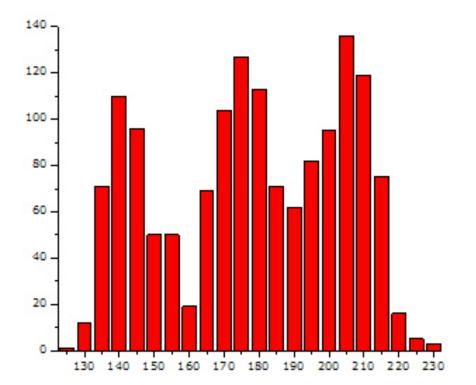


Parametric Representations (2)

- Good points:
 - Compact representation: just a few numbers
 - For a Gaussian: mean μ and variance $\sigma^{\! 2}$
 - Fast to compute
 - Nice mathematical properties
 - Easy to sample from
- Drawbacks:
 - May not match the data very well
 - Can give bad results if the fit is poor

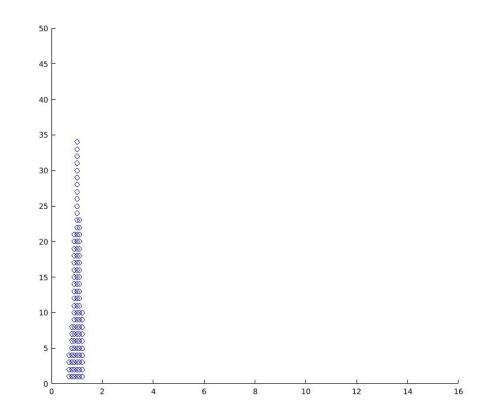
Nonparametric Representations

- No preconceived formula for the distribution.
- Instead, maintain a representation of the actual distribution, via *sampling*.
- Example: histogram
- Good points:
 - Can represent completely arbitrary distributions
- Drawbacks:
 - Requires more storage
 - Expensive to update



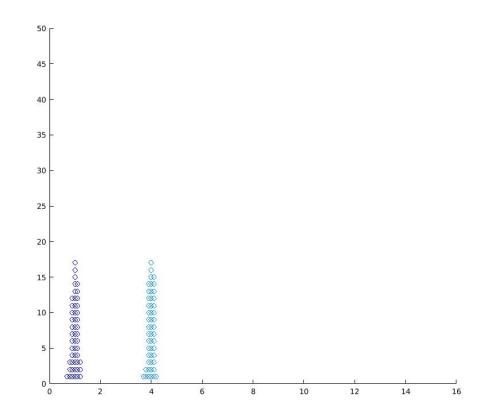
Where Is The Robot?

- Parametric: the robot is at x=1 with $\sigma^2 = 0.2$
- Non-parametric: 100 samples indicating robot position.



Where Is The Robot?

- Parametric: fail (or put robot at the mean: x=2.5)
- Non-parametric: 100 samples.



Particle Filters

- A particle filter is an efficient non-parametric representation of a distribution.
- Each particle represents a sample drawn from the distribution.
- As the distribution changes, we update the particles.
- Three kinds of updating:
 - Change the *value* the particle encodes (motion model).
 - Change the *weight* assigned to the particle (sensor model).
 - Resample the distribution, getting a fresh set of particles with initially equal weights.

Bayesian Filter, part 1

- Our belief about the robot's position at time t-1 is a probability distribution p(x_{t-1}), which we represent as a set of samples.
- At time t the robot moves, following some control signal u₁, producing a new distribution p(x₁).
- A motion model defines how our new prediction bel(x_t) arises from applying u_t.

$$\overline{bel}(x_t) = \int p(x_t | x_{t-1}, u_t) \cdot bel(x_{t-1}) dx_{t-1}$$

Why Are We Integrating?

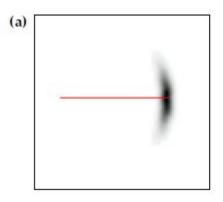
$$\overline{bel}(x_{t}) = \int_{x_{t-1}} p(x_{t}|x_{t-1}, u_{t}) \cdot bel(x_{t-1}) dx_{t-1}$$
Probability of
arriving at x_{t} given
that we were
previously at x_{t-1}
and got control
signal u_{t} .
Belief that we All
were previously possible
at location x_{t-1} previous
locations

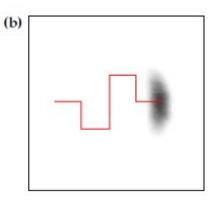
Integrated over all possible starting locations x_{t-1} .

Motion Models

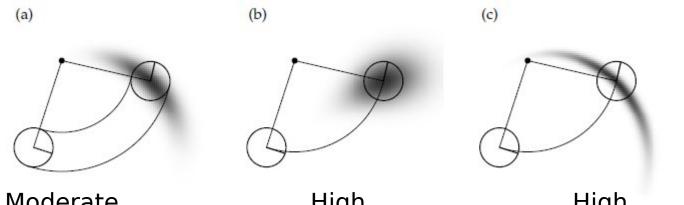
- Motion models express the noisiness of motion u_{t} .
- Typically use a simple parametric distribution.
 - Easy to sample.
- We represented the distribution $p(x_{t-1})$ as a set of *a* posteriori samples $bel(x_{t-1})$. Motion gives us $\overline{bel}(x_{t})$.
- How do we sample $\overline{bel}(x_{t})$?
- Solution: for each sample in bel(x_{t-1}), draw a value from the motion model's distribution and add it to the sample value.

Motion Model $p(x_t|x_{t-1}, u_t)$



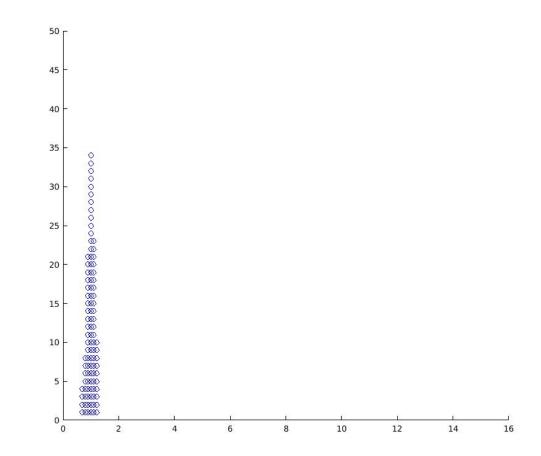


Figures from Thrun, Burgard, and Fox (2005) *Probabilistic Robotics*

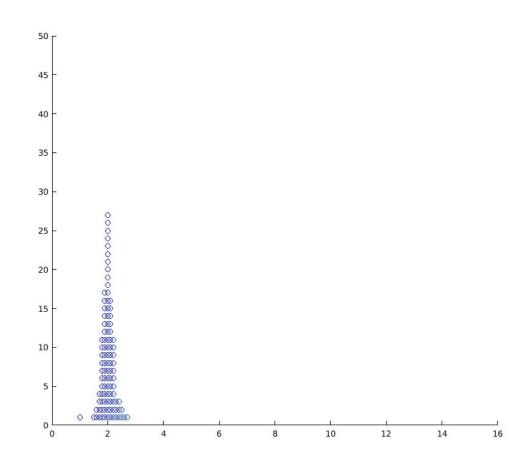


Moderate Noise Values High Translational Uncertainty High Rotational Uncertainty

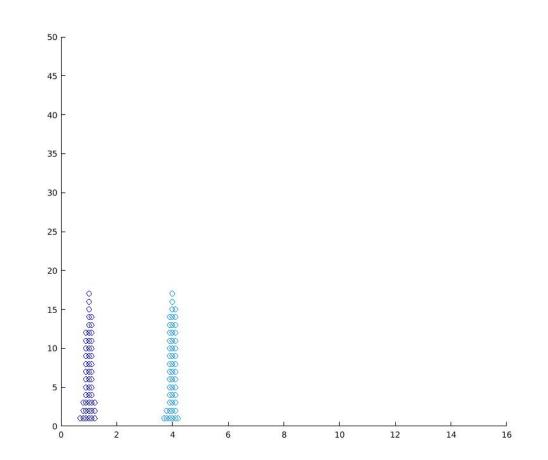
Robot at t=0: bel(x_0)



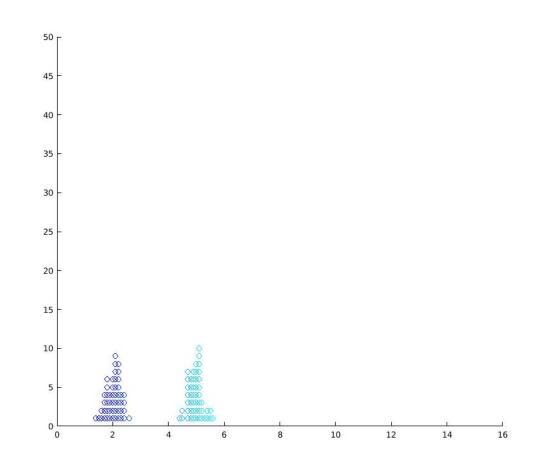
Prediction at t=1: $\overline{bel}(x_1)$



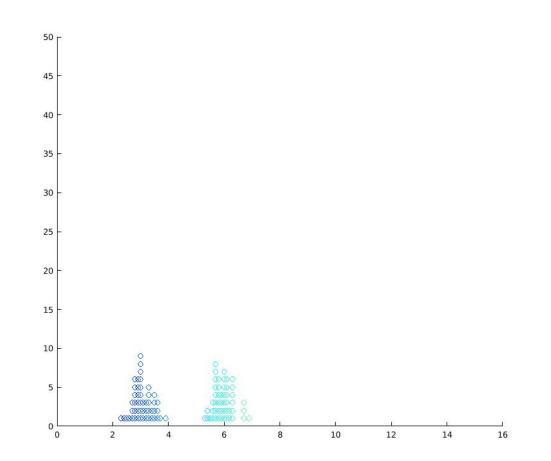
Robot at t=0: bel(x_0)



Prediction at t=1: $\overline{bel}(x_1)$



Prediction at t=2: $\overline{bel}(x_2)$



Correcting Our Prediction

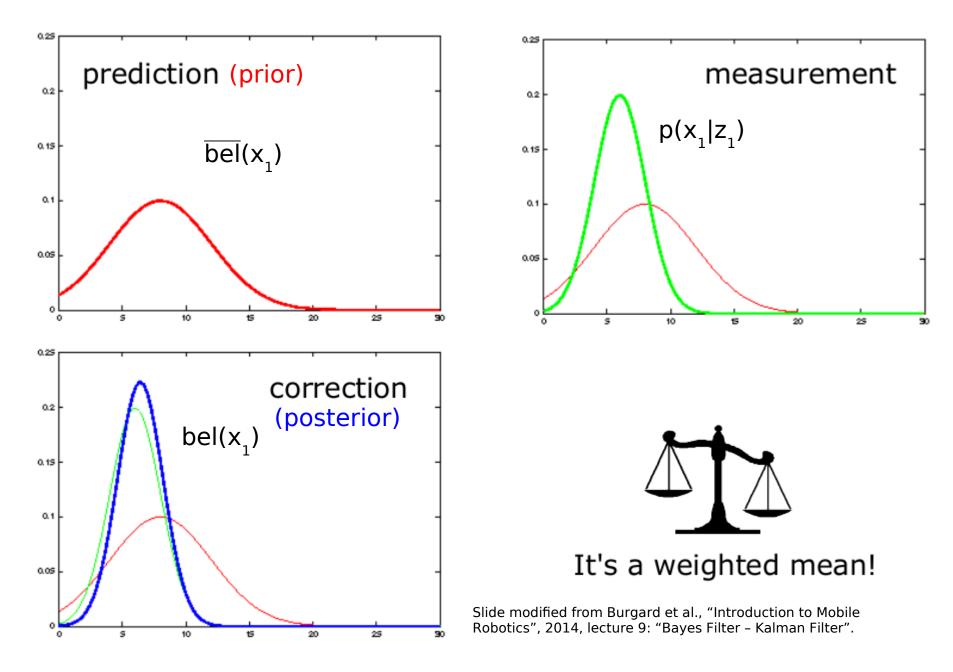
- To mitigate the noisiness of our motion model, we use sensor readings z_t to correct our belief distribution.
- Our sensors give us a probability distribution $p(x_1|z_1)$.
- Can't our sensors just tell us where we are?
- NO!
 - They're noisy.
 - An individual reading may not be that informative because the world can be ambiguous (e.g., doors look alike).
 - Need to combine information.

Sensor Model

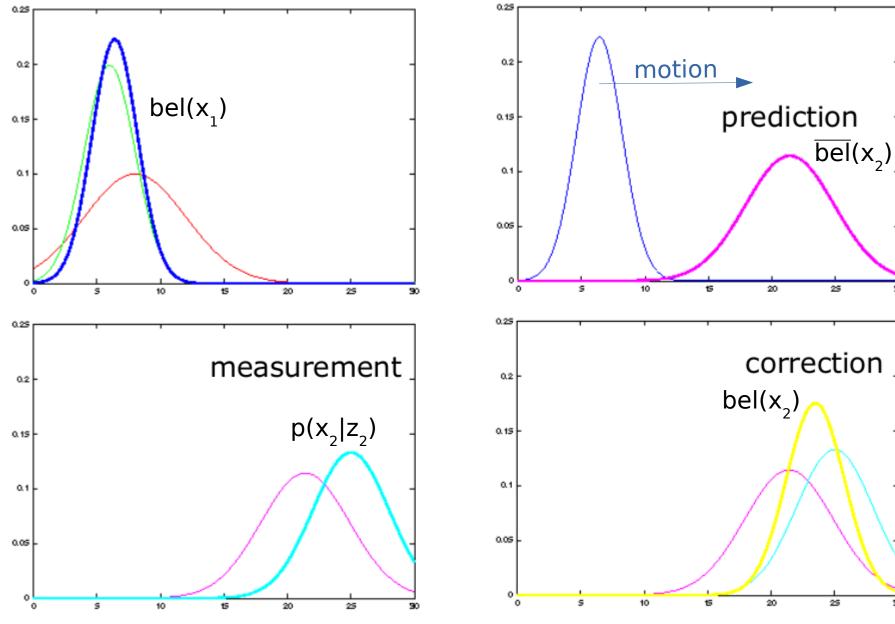
- We should try to model uncertainty in our sensor data.
- Lots of work on sonar and laser rangefinder noise models (e.g., effects of reflections, viewing angle, etc.)
- For visual landmarks:
 - Effects of camera resolution.
 - Distance estimates might have variance proportional to the distance value (larger distances have higher variance).
 - Bearing estimates might have variance inversely proportional to distance.

Interlude: The Kalman Filter

If distributions are gaussians, we can combine them using a **Kalman filter**. Weighting is inversely proportional to variance.



Second iteration: prior belief \rightarrow prediction \rightarrow measurement \rightarrow correction.

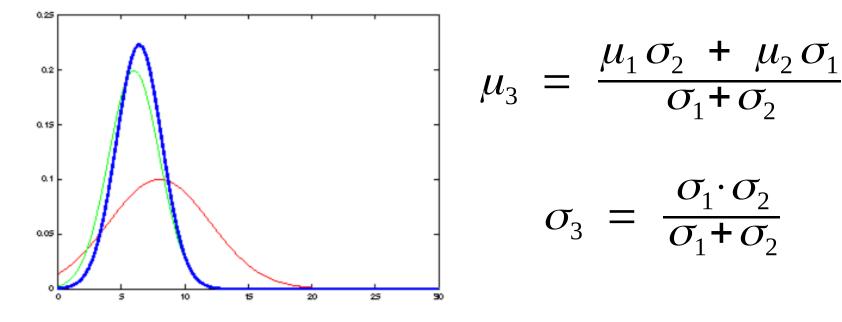


Slide modified from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 9: "Bayes Filter – Kalman Filter".

90

90

Product of Two Gaussians



Bayesian Filter, part 2

From part 1:

$$\overline{bel}(x_t) = \int_{x_{t-1}} p(x_t | x_{t-1}, u_t) \cdot bel(x_{t-1}) dx_{t-1}$$

Sensor reading z_t gives distribution $p(x_t|z_t)$.

Corrected: $bel(x_t) = \eta p(z_t | x_t) \cdot \overline{bel}(x_t)$

 η is a normalization constant.

But How Do We Correct Our Beliefs If We're Using Particles to Represent the Distribution?

Corrected Sampling Representation

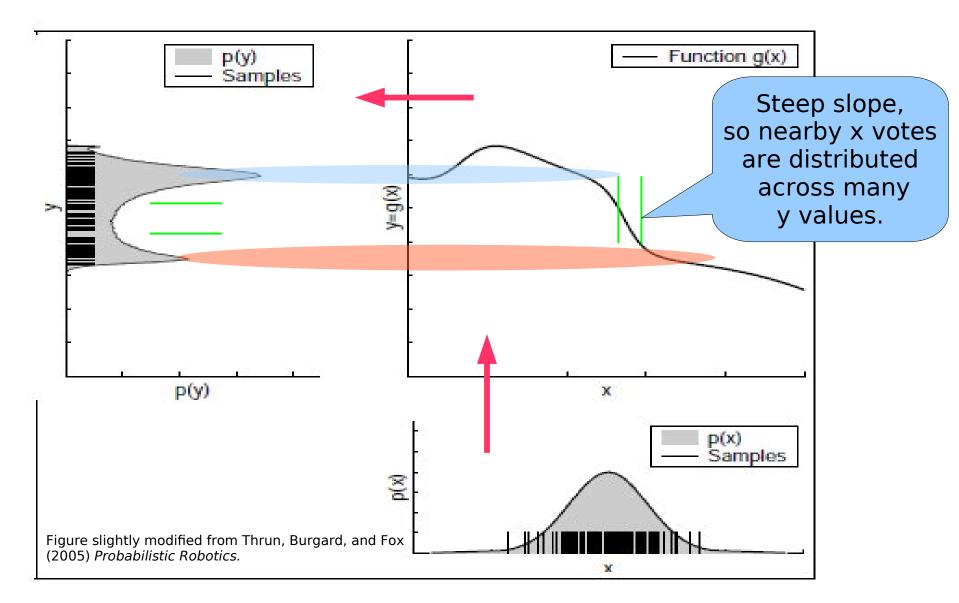
- Prior distribution $\overline{bel}(x_t)$ is "corrected" by weight $p(z_t|x_t)$ to give posterior $bel(x_t)$.
- The weighted particles are a sampling representation of the new distribution p(x,).
- The robot can move around and we can move the particles and update their weights.
- But is this a <u>good</u> representation?
- Particles whose weights become low aren't representing useful hypotheses. Eventually the representation falls apart because we're sampling the wrong regions.

Resampling

- Things break down when too many particles are representing the wrong regions of bel(x_t), so their weights are low.
- We can fix this by resampling bel(x_t), giving a fresh set of particles distributed correctly.
- But we have no formula for bel(x_t), and no direct representation of it.
- So how do we sample from it?

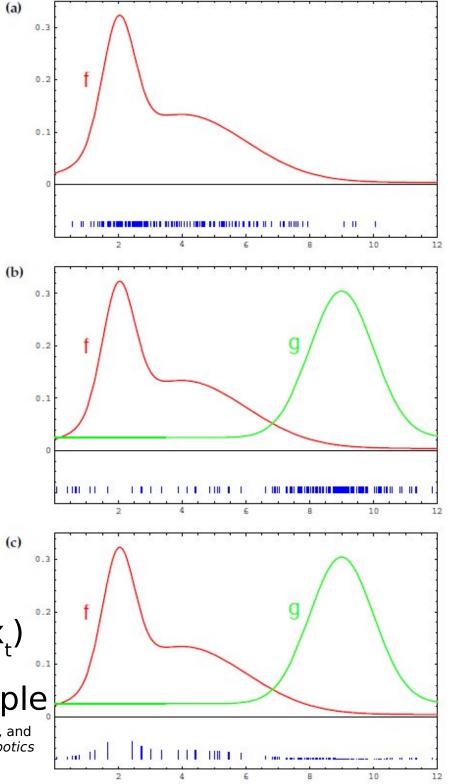
- Importance sampling.

Sampling a Function y=g(x) From an Arbitrary Distribution x



Importance Sampling

- Want to sample from f.
- Can only sample from g.
- Weight each sample by f(x) / g(x).
- The weighted samples approximate f.
- g is $\overline{bel}(x_t)$
- Weighting comes from p(z_t|x_t)
- Drawing from weighted sample gives bel(x_t) Figure from Thrun, Burgard, and Fox (2005) Probabilistic Robotics



32

Resampling: Drawing From Weighted Samples

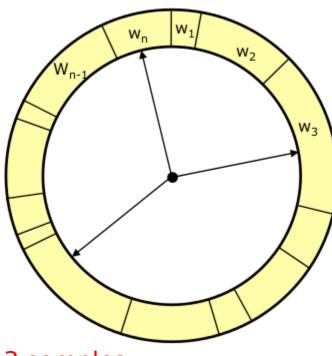
- We don't need to resample on every time step t. We can accumulate sensor data for several time steps, so our weights are more accurate.
- We can also use the weights to estimate the robot's location (if the distribution is unimodal):

$$\hat{x}(t) = \sum_{i} w_t^{(i)} \cdot x_t^{(i)}$$

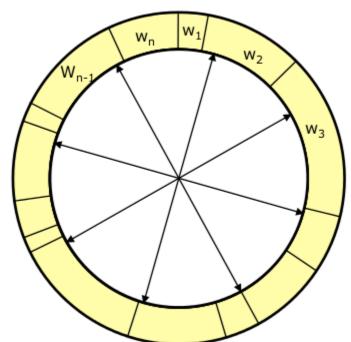
- When to resample?
 - If the variance on the weights is high, then many particles are representing non-useful portions of the space.
 - Resampling redistributes the particles so they are concentrated where the probability density is highest.

How To Resample

 Stochastic universal sampling is a trick for drawing samples from a weighted distribution as fairly as possible (**low variance sampling**).



3 samples



8 samples (equal spacing instead of independent sampling lowers the variance)

Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Weighting in a Corridor

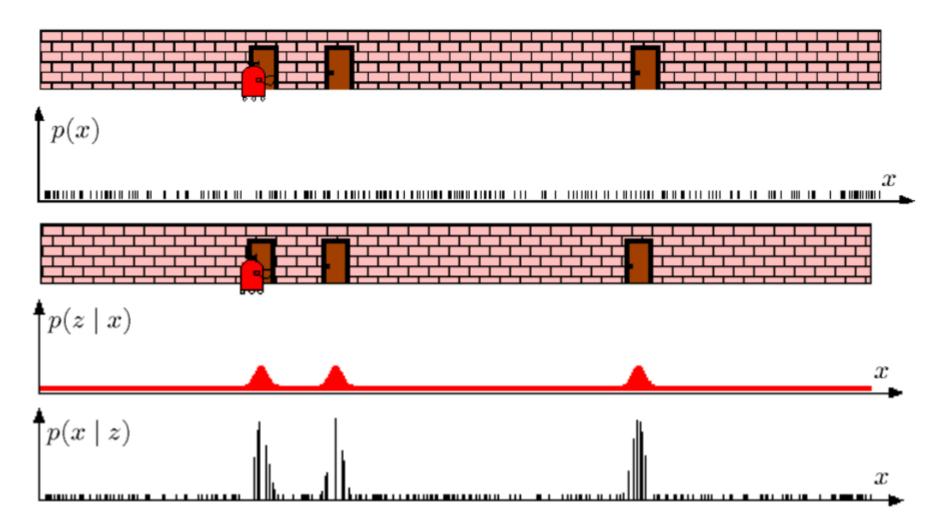


Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Moving and Then Resampling

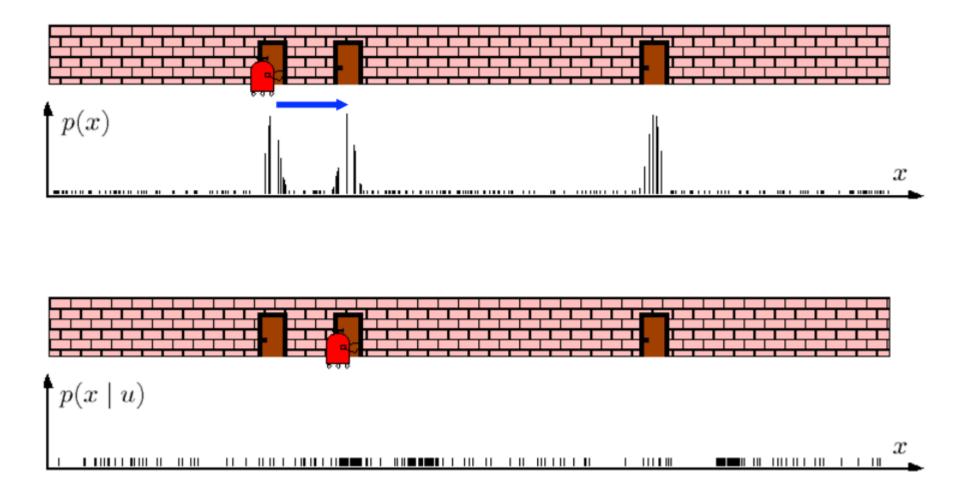


Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Sensing and Weighting

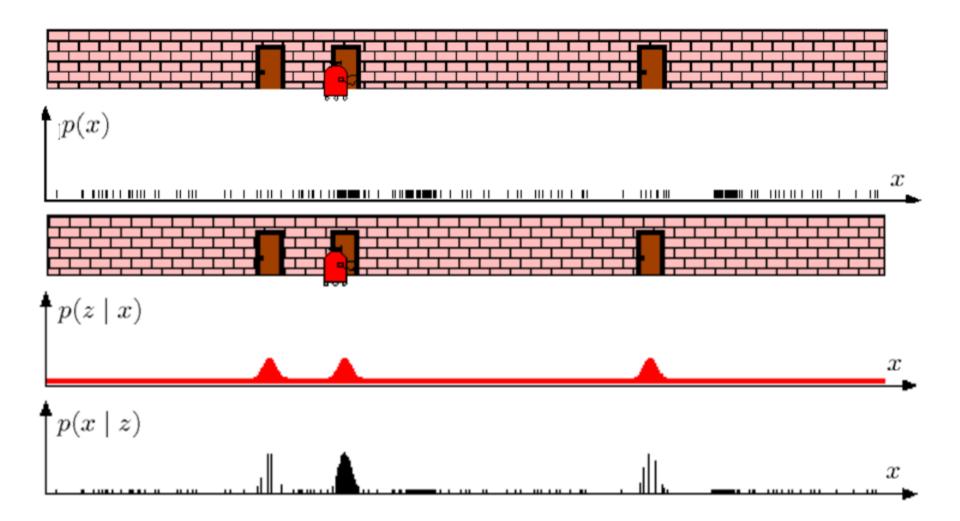


Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Moving and Then Resampling

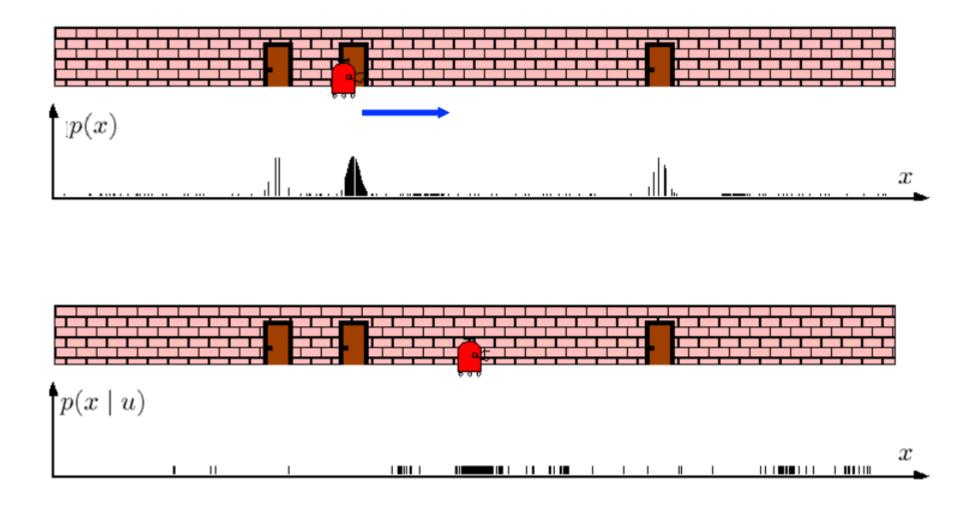


Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Summary

- Particle filters are the preferred method for robot localization in the real world.
- Robot pose typically encoded as (x,y,θ) .
- A map is needed to define how sensor values indicate locations. But what if we don't have a map?
- Particles can be used to represent hypotheses about the map as well as about the robot's location.
 - SLAM: Simultaneous Localization and Mapping.
 - We'll explore this in a later lecture.