
15-494/694: Cognitive Robotics

Lecture 9:

Path Planning with
Rapidly-exploring
Random Trees

Navigating with the Pilot

Image from http://www.futuristgerd.com/2015/09/10 

Dave Touretzky
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Outline

● How is path planning used in robotics?

● Path planning as state space search

● RRTs: Rapidly-exploring Random Trees

● The RRT-Connect algorithm

● Collision detection

● Smoothing

● Path planning with constraints

● Navigating with the Pilot
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Path Planning in Robotics

1. Navigation path planning

– How to get from the robot's current location to a goal.

– Avoid obstacles.

– Provide for localization.

2. Manipulation path planning

– Move an arm to grasp and manipulate an object.

– Avoid obstacles.

– Obey constraints (e.g., don't spill the coffee).
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Navigation Planning

● 2D state space:  (x,y) coordinates of the robot

– Treat the robot as a point or a circle.

● 3D state space: (x,y,q) pose of the robot

– Heading matters when the robot is asymmetric

– Heading matters when the robot's motion is constrained

Obstacle 
inflation
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Grid-Based Path Planning
● Discretizes the environment into a 2D grid.

● Wavefront algorithm: propagate from the start location.

● Can also use best-first or A* search.

● Works okay in small spaces.

But it has its drawbacks:

● Treats the robot as a point. Unrealistic!

● Not efficient in higher dimensional state spaces.
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Wavefront Algorithm
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Wavefront Algorithm
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Wavefront Algorithm
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Best-First or A* Search
● Works okay in small spaces.

Same drawbacks as wavefront:

● Treats the robot as a point. Unrealistic!

● Not efficient in higher dimensional state spaces.

Figure from 
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/Overview_of_Motion_Planning.php
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Best-First  or A* Search
Can Be Slow

● Can get trapped in a cul de sac for a long time.

● See search animation videos on YouTube.

● Random search might be faster.

SS GG
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Potential Field Path Planning

Figure from http://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php

● Can fail due to local 
minima in the 
potential function.

● Consider a U-shaped 
obstacle.

● Requires careful 
tuning.
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Cspace Transform

● The area around an obstacle that would cause a 
collision with the robot.

Robot

Obstacle

Cspace
(configuration

space)

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation
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Arm Path Planning

● Cspace transform blocks out regions of joint space

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation

2 3
1

4
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State Space Search

The path planning problem:

Given an n-dimensional state space and

● a start state S = <s
1
,s

2
,...,s

n
>

● a goal state G = <g
1
,g

2
,...,g

n
>

● an admissibility predicate P (collision test + constraints)

find a path from S to G such that every state on the path 
satisfies P.
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Rapidly-exploring Random Trees

● Described in LaValle (1998), Kuffner & LaValle (2000)

● Create a tree with initial state S as the root.

● Repeat up to K times:

Pick a point q
rand

 in configuration space:

● Sometimes q
rand

 is really random

● Sometimes q
rand

 is the goal G

– Find q
nearest

, the closest node to q
rand

- Add a new node q
new

 by extending q
nearest 

some

       distance D toward q
rand

.

- If q
new

 is close enough to the goal G, return.

Image from 
http://joonlecture.blogspot.com
/2011/02/improving-optimality-
of-rrt-rrt.html



20

RRT Algorithm

● Rapidly samples the  state space.

● Cannot get trapped in local 
minima.

● Works well in high-dimensional 
spaces.

● Does not generate smooth paths.

● Can't tell when no solution exists; 
only quits when it exceeds the 
iteration limit K.

http://msl.cs.uiuc.edu/rrt/treemovie.gif

http://msl.cs.uiuc.edu/rrt/treemovie.gif
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RRTs for Arm Path Planning

● Each node encodes an
arm configuration in
joint space.

● Only add nodes that
don't cause collisions
(with self or obstacles).

● Alternately (i) extend the
tree in random directions
and (ii) move toward the goal.

Slide courtesy of Glenn Nickens
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Implementation Notes

● Finding q
nearest

, the nearest node in the tree to q
rand

, is 

the most expensive part of the algorithm.

– Use K-D trees to efficiently find q
nearest

?

– In practice, K-D trees are slower unless you have a huge 
number of nodes (several thousand).

● Why only go a distance D toward the goal state G? Why 
not go as far as we can, in steps of D?

– With no obstacles, this reaches the goal very quickly, but 
random search will get there nearly as quickly as we 
keep extending the nearest node to the goal.

– But when obstacles are present, this can waste time filling 
out branches that will ultimately fail.

– Generating lots of extra nodes bloats the tree, which slows 
down the algorithm.
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RRT-Connect Algorithm
● Variant of RRT that grows two trees:

– one from the start state toward the goal

– one from the goal state toward the start

● When the two trees
connect, a solution
has been found.

● Not guaranteed to
be better than RRT,
but often helps.

Goal

Robot
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RRTs in An Open Field
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RRT-Connect For Arms

Slide courtesy of Glenn Nickens

● Use IK to calculate the
goal configuration.

● Use FK to calculate
arm configurations for
collision detection.
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Collision Detection

● Represent the robot and the obstacles as convex 
polygons.

● In 2D, use the Separating Axis Theorem to check for 
collisions.

– Easy to code

– Fast to compute

● In 3D, things get more complex.

– Could use the GJK (Gilbert-Johnson-Keerthi) algorithm, used 
in many physics engines for video games.
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Algorithm to Apply the SAT

● For every edge of polygon A and of polygon B:

– Project all the vertices onto the line normal to that edge.

– Calculate the min and max coordinates for each polygon

– If minA < minB and maxA > minB OR
if minB < minA and maxB > minA
  then the polygons collide.

● If you find any edge projection in which the ranges 
don't overlap, the polygons do not collide.
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Separating Axis Theorem

“If two convex polygons 
don't overlap, then there 
exists a line, parallel to 
one of their edges that 
separates them.”

Separating
 line

Separating
 axis
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Separating Axis Theorem
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Arm Collision Detection

● Represent each link as a separate polygon.

● Check for:

– Self-collisions other than link n with link n+1

– Collisions of a link with an obstacle
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Path Smoothing

● The random component of RRT-Connect search often 
results in a jerky and meandering solution.

● Solution: apply a path smoothing algorithm.

● Repeat N times:

– Pick two points on the path at random

– See if we can linearly interpolate between those points 
without collisions.

– If so, then snip out that segment of the path.



32

Smoothing An Arm Trajectory

Slide courtesy of Glenn Nickens

● Start state

● Intermed. states

● End state

Smoothed
Path

Original 
Path

Obstacle
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Path Planning With Constraints

● With no closeable fingers, arm motion is constrained to 
be within about 60o of finger direction or we'll lose the 
object.

(video)

http://www.youtube.com/watch?v=9oDQ754YVoc

http://www.youtube.com/watch?v=9oDQ754YVoc
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Implementing Constraints

● Each time we generate a new state q
new

:

– Check to see if q
new

 obeys the constraint.

– For finger motion constraint, check if the direction of 
motion from parent state q

nearest
 to new state q

new
 is 

within 60o of the finger direction.

● What if q
new

 doesn't obey the constraint?

– Reject it and pick a new q
rand

 from which we'll generate a 

new q
new

.

– Or try to “fix” q
new

 by perturbing its value slightly so as to 

satisfy the constraint.
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Path Planning Failure

RRT path planning can legitimately fail if:

● There is no route to the goal due to obstacles blocking 
every path from start to goal.

● The paths to the goal don't lie entirely within the 
allowed world bounds (world map too small).

But it can also fail if:

● The iteration limit was set too low.

● The start state is already in collision with something.

● The goal state is in collision with something.
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Running Out of Iterations

Goal

Robot
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Path Planning Failure:
Goal State Is In Collision

Robot body 
represented as 
a series of 
polygons.

Obstacle 

Starting 
pose

Goal 
pose

Starting 
pose

Obstacle
inflation 
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Full 3D Path Planning:
The Piano Movers Problem

Figure from 
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/Overview_of_Motion_Planning.php

Open Motion Planning Library:
   http://ompl.kavrakilab.org



39

The Pilot

● Navigation utility defined in cozmo_fsm/pilot.fsm

● How to go from A to B:

– Generate obstacle list from current world map.

– Use RRT-Connect to plan a path from A to B?
● Good in open spaces; has trouble with doorways.

– Formulate a navigation plan to follow the path.
● Straight segments
● Turns
● Arcs
● Landmark checks

– Execute the navigation plan, correcting as necessary.

– Report success or failure.
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PilotToPose Node

● State node for invoking the Pilot.

● Tell it where you want to go, and (optionally) the 
desired heading at the destination.

● Use a heading of NaN if you don't care.

● =PILOT=> transition can check for errors.

go: PilotToPose(Pose(500, 0, 0, angle_z=degrees(90)))
go =C=> Say(“Success”)
go =PILOT(StartCollides)=> Say(“Start collides!”)
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Path Viewer

 PilotToPose(Pose(300, 0, 0, angle_z=degrees(90)))
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Hybrid Path-Planner

● cozmo-tools now uses a hybrid path planner.

● Check for StartCollides condition and use RRT to find a 
maneuver that disengages from the obstacle, e.g., 
move away from a wall.

● Wavefront algorithm finds a route to the goal using 
large obstacle inflation. Easily goes through doorways.

● RRT post-processing:

– Check for collisions using actual robot shape and
less obstacle inflation

– Generate a condensed path with fewer steps

● Check for doorway crossing and insert “doorpass” steps 
in the navigation plan.
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