
15-494/694: Cognitive Robotics

Lecture 9:

Path Planning with
Rapidly-exploring
Random Trees

Navigating with the Pilot

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Outline

● How is path planning used in robotics?

● Path planning as state space search

● RRTs: Rapidly-exploring Random Trees

● The RRT-Connect algorithm

● Collision detection

● Smoothing

● Path planning with constraints

● Navigating with the Pilot

3

Path Planning in Robotics

1. Navigation path planning

– How to get from the robot's current location to a goal.

– Avoid obstacles.

– Provide for localization.

2. Manipulation path planning

– Move an arm to grasp and manipulate an object.

– Avoid obstacles.

– Obey constraints (e.g., don't spill the coffee).

4

Navigation Planning

● 2D state space: (x,y) coordinates of the robot

– Treat the robot as a point or a circle.

● 3D state space: (x,y,q) pose of the robot

– Heading matters when the robot is asymmetric

– Heading matters when the robot's motion is constrained

Obstacle
inflation

5

Grid-Based Path Planning
● Discretizes the environment into a 2D grid.

● Wavefront algorithm: propagate from the start location.

● Can also use best-first or A* search.

● Works okay in small spaces.

But it has its drawbacks:

● Treats the robot as a point. Unrealistic!

● Not efficient in higher dimensional state spaces.

6

Wavefront Algorithm

 0

7

Wavefront Algorithm

1 1 1

1 0 1

8

Wavefront Algorithm

2 2 2 2

1 1 1 2

1 0 1 2

9

Wavefront Algorithm

3 3 3 3

2 2 2 2

1 1 1 2

1 0 1 2

10

Wavefront Algorithm

4 4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 2

1 0 1 2

11

Wavefront Algorithm

9 9 9 9 9 9 9 9 9 10

8 8 8 8 8 8 8 8 9 10

7 7 7 7 7 7 7 8 9 10

6 6 6 6 6 6 7 9 10

5 5 5 5 5 6 7 10 10

4 4 4 4 6 7 11 11

3 3 3 3 7 7 12 12

2 2 2 2 13 13

1 1 1 2 15 14 14 14

1 0 1 2 15 15 15 15

12

Wavefront Algorithm

9 9 9 9 9 9 9 9 9 10

8 8 8 8 8 8 8 8 9 10

7 7 7 7 7 7 7 8 9 10

6 6 6 6 6 6 7 9 10

5 5 5 5 5 6 7 10 10

4 4 4 4 6 7 11 11

3 3 3 3 7 7 12 12

2 2 2 2 13 13

1 1 1 2 15 14 14 14

1 0 1 2 15 15 15 15

13

Best-First or A* Search
● Works okay in small spaces.

Same drawbacks as wavefront:

● Treats the robot as a point. Unrealistic!

● Not efficient in higher dimensional state spaces.

Figure from
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/Overview_of_Motion_Planning.php

14

Best-First or A* Search
Can Be Slow

● Can get trapped in a cul de sac for a long time.

● See search animation videos on YouTube.

● Random search might be faster.

SS GG

15

Potential Field Path Planning

Figure from http://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php

● Can fail due to local
minima in the
potential function.

● Consider a U-shaped
obstacle.

● Requires careful
tuning.

16

Cspace Transform

● The area around an obstacle that would cause a
collision with the robot.

Robot

Obstacle

Cspace
(configuration

space)

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation

17

Arm Path Planning

● Cspace transform blocks out regions of joint space

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation

2 3
1

4

18

State Space Search

The path planning problem:

Given an n-dimensional state space and

● a start state S = <s
1
,s

2
,...,s

n
>

● a goal state G = <g
1
,g

2
,...,g

n
>

● an admissibility predicate P (collision test + constraints)

find a path from S to G such that every state on the path
satisfies P.

19

Rapidly-exploring Random Trees

● Described in LaValle (1998), Kuffner & LaValle (2000)

● Create a tree with initial state S as the root.

● Repeat up to K times:

Pick a point q
rand

 in configuration space:

● Sometimes q
rand

 is really random

● Sometimes q
rand

 is the goal G

– Find q
nearest

, the closest node to q
rand

- Add a new node q
new

 by extending q
nearest

some

 distance D toward q
rand

.

- If q
new

 is close enough to the goal G, return.

Image from
http://joonlecture.blogspot.com
/2011/02/improving-optimality-
of-rrt-rrt.html

20

RRT Algorithm

● Rapidly samples the state space.

● Cannot get trapped in local
minima.

● Works well in high-dimensional
spaces.

● Does not generate smooth paths.

● Can't tell when no solution exists;
only quits when it exceeds the
iteration limit K.

http://msl.cs.uiuc.edu/rrt/treemovie.gif

http://msl.cs.uiuc.edu/rrt/treemovie.gif

21

RRTs for Arm Path Planning

● Each node encodes an
arm configuration in
joint space.

● Only add nodes that
don't cause collisions
(with self or obstacles).

● Alternately (i) extend the
tree in random directions
and (ii) move toward the goal.

Slide courtesy of Glenn Nickens

22

Implementation Notes

● Finding q
nearest

, the nearest node in the tree to q
rand

, is

the most expensive part of the algorithm.

– Use K-D trees to efficiently find q
nearest

?

– In practice, K-D trees are slower unless you have a huge
number of nodes (several thousand).

● Why only go a distance D toward the goal state G? Why
not go as far as we can, in steps of D?

– With no obstacles, this reaches the goal very quickly, but
random search will get there nearly as quickly as we
keep extending the nearest node to the goal.

– But when obstacles are present, this can waste time filling
out branches that will ultimately fail.

– Generating lots of extra nodes bloats the tree, which slows
down the algorithm.

23

RRT-Connect Algorithm
● Variant of RRT that grows two trees:

– one from the start state toward the goal

– one from the goal state toward the start

● When the two trees
connect, a solution
has been found.

● Not guaranteed to
be better than RRT,
but often helps.

Goal

Robot

24

RRTs in An Open Field

25

RRT-Connect For Arms

Slide courtesy of Glenn Nickens

● Use IK to calculate the
goal configuration.

● Use FK to calculate
arm configurations for
collision detection.

26

Collision Detection

● Represent the robot and the obstacles as convex
polygons.

● In 2D, use the Separating Axis Theorem to check for
collisions.

– Easy to code

– Fast to compute

● In 3D, things get more complex.

– Could use the GJK (Gilbert-Johnson-Keerthi) algorithm, used
in many physics engines for video games.

27

Algorithm to Apply the SAT

● For every edge of polygon A and of polygon B:

– Project all the vertices onto the line normal to that edge.

– Calculate the min and max coordinates for each polygon

– If minA < minB and maxA > minB OR
if minB < minA and maxB > minA
 then the polygons collide.

● If you find any edge projection in which the ranges
don't overlap, the polygons do not collide.

28

Separating Axis Theorem

“If two convex polygons
don't overlap, then there
exists a line, parallel to
one of their edges that
separates them.”

Separating
 line

Separating
 axis

29

Separating Axis Theorem

30

Arm Collision Detection

● Represent each link as a separate polygon.

● Check for:

– Self-collisions other than link n with link n+1

– Collisions of a link with an obstacle

31

Path Smoothing

● The random component of RRT-Connect search often
results in a jerky and meandering solution.

● Solution: apply a path smoothing algorithm.

● Repeat N times:

– Pick two points on the path at random

– See if we can linearly interpolate between those points
without collisions.

– If so, then snip out that segment of the path.

32

Smoothing An Arm Trajectory

Slide courtesy of Glenn Nickens

● Start state

● Intermed. states

● End state

Smoothed
Path

Original
Path

Obstacle

33

Path Planning With Constraints

● With no closeable fingers, arm motion is constrained to
be within about 60o of finger direction or we'll lose the
object.

(video)

http://www.youtube.com/watch?v=9oDQ754YVoc

http://www.youtube.com/watch?v=9oDQ754YVoc

34

Implementing Constraints

● Each time we generate a new state q
new

:

– Check to see if q
new

 obeys the constraint.

– For finger motion constraint, check if the direction of
motion from parent state q

nearest
 to new state q

new
 is

within 60o of the finger direction.

● What if q
new

 doesn't obey the constraint?

– Reject it and pick a new q
rand

 from which we'll generate a

new q
new

.

– Or try to “fix” q
new

 by perturbing its value slightly so as to

satisfy the constraint.

35

Path Planning Failure

RRT path planning can legitimately fail if:

● There is no route to the goal due to obstacles blocking
every path from start to goal.

● The paths to the goal don't lie entirely within the
allowed world bounds (world map too small).

But it can also fail if:

● The iteration limit was set too low.

● The start state is already in collision with something.

● The goal state is in collision with something.

36

Running Out of Iterations

Goal

Robot

37

Path Planning Failure:
Goal State Is In Collision

Robot body
represented as
a series of
polygons.

Obstacle

Starting
pose

Goal
pose

Starting
pose

Obstacle
inflation

38

Full 3D Path Planning:
The Piano Movers Problem

Figure from
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/Overview_of_Motion_Planning.php

Open Motion Planning Library:
 http://ompl.kavrakilab.org

39

The Pilot

● Navigation utility defined in cozmo_fsm/pilot.fsm

● How to go from A to B:

– Generate obstacle list from current world map.

– Use RRT-Connect to plan a path from A to B?
● Good in open spaces; has trouble with doorways.

– Formulate a navigation plan to follow the path.
● Straight segments
● Turns
● Arcs
● Landmark checks

– Execute the navigation plan, correcting as necessary.

– Report success or failure.

40

PilotToPose Node

● State node for invoking the Pilot.

● Tell it where you want to go, and (optionally) the
desired heading at the destination.

● Use a heading of NaN if you don't care.

● =PILOT=> transition can check for errors.

go: PilotToPose(Pose(500, 0, 0, angle_z=degrees(90)))
go =C=> Say(“Success”)
go =PILOT(StartCollides)=> Say(“Start collides!”)

41

Path Viewer

 PilotToPose(Pose(300, 0, 0, angle_z=degrees(90)))

42

Hybrid Path-Planner

● cozmo-tools now uses a hybrid path planner.

● Check for StartCollides condition and use RRT to find a
maneuver that disengages from the obstacle, e.g.,
move away from a wall.

● Wavefront algorithm finds a route to the goal using
large obstacle inflation. Easily goes through doorways.

● RRT post-processing:

– Check for collisions using actual robot shape and
less obstacle inflation

– Generate a condensed path with fewer steps

● Check for doorway crossing and insert “doorpass” steps
in the navigation plan.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

