
15-494/694: Cognitive Robotics

Lecture 8:

Review, and SLAM

Image from http://www.futuristgerd.com/2015/09/10 

Dave Touretzky

http://www.futuristgerd.com/2015/09/10


2

Kinematics Again

● Why we need a kinematics engine (Tower 
of Hanoi demo).

● But we need path planning too.



3

Kinematics Review

● What is a kinematic chain?



4

Kinematics Review

● What is a kinematic chain?
– An alternating sequence of joints and 

links.
– The transformation between reference 

frame i and reference frame i+1 is 
described by DH parameters.



5

Kinematics Review (2)

● What defines a reference frame?



6

Kinematics Review (2)

● What defines a reference frame?
– An origin (x,y,z) and a 3D orientation.
– The orientation can be described in terms 

of a 3D rotation matrix.
– We could also use Euler angles, or a 

quaternion.



7

Kinematics Review (3)

● Why do we need a dummy joint between 
the head reference frame and the camera 
reference frame?



8

Kinematics Review (3)

● Why do we need a dummy joint between 
the head reference frame and the camera 
reference frame?

– The four DH parameters for one joint don’t 
provide enough degrees of freedom to 
let us control both the orientation and 
the origin of the new reference frame.

– The dummy joint adds four additional 
degrees of freedom.



9

Kinematics Review (4)

● How do we move from the joint i 
reference frame to the link i reference 
frame?



10

Kinematics Review (4)

● How do we move from the joint i 
reference frame to the link i reference 
frame?

– Use joint.apply_q() to apply the rotation.



11

Kinematics Review (4)

● How do we move from the joint i 
reference frame to the link i reference 
frame?

– Use joint.apply_q() to apply the rotation.

● How do we move from the link i reference 
frame to the joint i+1 reference frame?



12

Kinematics Review (4)

● How do we move from the joint i 
reference frame to the link i reference 
frame?

– Use joint.apply_q() to apply the rotation.

● How do we move from the link i reference 
frame to the joint i+1 reference frame?

– Apply the (constant) transformation 
matrix described by the DH parameters.



13

Particle Filter Review

● What are the results of each of the 
following choices of sensor model?

– Distance only; one landmark.
– Distance only; two landmarks.
– Bearing only; one landmark.
– Bearing only; two landmarks.
– Distance plus bearing; one landmark.
– Distance plus bearing; two landmarks.
– Non-point landmarks (cubes).
– Non-point landmarks (ArUco markers).



14

How To Build A World Map
● SLAM: Simultaneous Localization and 

Mapping algorithm.
● Each particle stores:

– a hypothesis about the robot's location
– a hypothesis about the map, e.g., a set of 

landmark identities and locations.
● Particles score well if:

– Landmark locations match the sensor 
values predicted by the robot's location.

● Robot location is jittered by the motion 
model. This jitters the landmark locations.



15

First SLAM Video

● SLAM works well even when landmarks 
are ambiguous, such as identical 
markers.

● Reason: updating the particle weights 
based on sensor readings after 
movement applies strong constraints on 
possible robot locations.



16

Brenner’s Particle Filter Course

● Part A: introduce robot, odometry, laser 
scanner as distance sensor.

● Part B: using laser sensor data to 
estimate landmark positions.

● Part C: Bayes filter: predict (motion 
model) and correct (sensor model).

● Part D: Kalman filter (Bayes with gaussian 
noise model) and Extended Kalman Filter 
(arbitrary noise model; approximate with 
Taylor series). Error ellipses.



17

Brenner’s Particle Filter Course

● Part E: particle filters (non-parametric 
alternative to EKF; arbitrary distributions 
including multi-modal).

SLAM:
● Part F: EKF SLAM: use EKF for both 

position and landmarks.
● Part G: Particle SLAM: use particle filter 

for position and EKF for landmarks.



18

The cozmo-tools Particle Filter

● Defined in cozmo_fsm/particle.py
– Versions with and without SLAM
– Default is SLAMParticleFilter
– Uses walls defined by ArUco markers as 

landmarks, but you can control this.

robot.world.particle_filter

p0 = robot.world.particle_filter.particles[0]

p0.landmarks



19

Representation of a Landmark

Assume the robot is seeing Wall 1.

wall1 = p0.landmarks['Wall-1']

● wall1[0] is a column vector [x,y]T giving the 
position of the landmark on the map.

● wall1[1] is the landmark’s orientation, theta.
● wall1[2] is the covariance matrix S used in the 

EKF update equation.



20

How Do We Display the Map?

● Every particle has a weight.
● Use the map from the most highly 

weighted particle.
● This means the map will sometimes 

“jump” to a new configuration if the 
highest weighted particle changes.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

