
15-494/694: Cognitive Robotics

Lecture 2:

VEX AIM Software
Architecture

and

Python Control Structure

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Robot Software Architecture

● A robot is a complex collection of
interacting hardware/software systems.

● Example: navigation isn't just motion.
– Need vision to find landmarks.
– Head + body motion to point the camera.

● Layers of control:
– Low level: control one actuator
– Middle level: coordinate multiple actuators

(e.g., wheels and kicker) for one task.
– High level: goal-directed behaviors.

3

Python Control Concepts

● To understand the vex-aim-tools
architecture, you must be familiar with:

– Iterators
– Generators
– Coroutines
– Asyncio: event loops and tasks
– Threads

4

Iterators

>>> nums = [1,2,3,4]

>>> for x in nums: print(f'x = {x}')

x=1
x=2
x=3
x=4

>>> [x*x for x in nums]

[1, 4, 9, 16]

list comprehension

5

What Makes an Object Iterable?

Defines an __iter__() method that returns an
iterator.

>>> nums.__iter__

<method-wrapper '__iter__' of list
object at 0x7ffa366baf48>

>>> nums.__iter__()

<list_iterator object at 0x7ffa34aa3c88>

6

What Is an Iterator?

References a sequence and defines a
__next__() method that returns the next
item or raises StopIteration if there are no
more items.

>>> a = nums.__iter__()

>>> a.__next__()

1

>>> a.__next__()

2

7

StopIteration

>>> a.__next__()

3

>>> a.__next__()

4

>>> a.__next__()

Traceback: … StopIteration

8

How a For Loop Works

for x in nums: print(f'x = {x}')

it = nums.__iter__()
try:
 while True:
 x = it.__next__()
 print(f'x = {x}')
except StopIteration:
 pass

9

Lots of Things Are Iterable

>>> '__iter__' in dir([1,2,3])
True

>>> '__iter__' in dir(range(3,5))
True

>>> '__iter__' in dir({1,2,3})
True

>>> '__iter__' in dir({'foo' : 3})
True

list

range

set

dictionary

10

Make Your Own Iterable Thing

 Needs an __iter__ method.

class MyIterable():

 def __init__(self,vals):
 self.vals = vals

 def __iter__(self):
 return MyIterator(self.vals)

11

Make Your Own Iterator

 Needs a __next__ method.

class MyIterator():
 def __init__(self,vals):
 self.vals = vals
 self.index = 0

 def __next__(self):
 if self.index == len(self.vals):
 raise StopIteration
 else:
 self.index += 1
 return self.vals[self.index-1]

12

Testing MyIterable

>>> a = MyIterable([1, 2, 3, 4])

>>> for x in a: print(f'x = {x}')
x = 1
x = 2
x = 3
x = 4

>>> [x**3 for x in a]

[1, 8, 27, 64]

13

Generators

● Generators are coroutines that suspend
their state using the yield keyword.

● Generators are represented by
generator objects instead of functions.

● Generators can be used either as
producers (similar to iterators) or as
consumers.

14

Generator As Producer

def myproducer(vals):
 print('myproducer called')
 index = 0
 while index < len(vals):
 print('yielding')
 yield vals[index]
 index += 1
 raise StopIteration

Because “yield” appears in myproducer,
calling myproducer doesn't actually run the
function; it returns a generator object.

15

Generator As Producer

>>> g = myproducer(['foo','bar'])
<generator object myproducer at …>

>>> next(g)
myproducer called
yielding
'foo'

>>> next(g)
yielding
'bar'

16

Generator Expressions

Like a list comprehension, but uses
parentheses instead of brackets: lazy.

>>> g = (x**2 for x in [1,2,3,4,5])
<generator object <genexpr> at …>

>>> next(g)
1

>>> g.__next__()
4

17

list() exhausts a generator

>>> g
<generator object <genexpr> at …>

>>> list(g)
[9, 16, 25]

18

Generator As Consumer

def myconsumer():
 print('myconsumer called')
 try:
 while True:
 x = yield
 print(f'{x} squared is {x**2}')
 except GeneratorExit:
 print('Generator closed.')

A statement 'x = yield' marks a consumer
generator, which must be primed.

19

Generator As Consumer

>>> c = myconsumer()
<generator object myconsumer at …>

>>> c.send(None)
myconsumer called

>>> for x in range(1,5): c.send(x)
1 squared is 1
2 squared is 4
…

>>> c.close()
Generator closed.

20

Generator Pipeline

Generators can be chained together for
complex processing tasks.

That's all we're going to say about
generators. What about coroutines?

Producer

No x=yield
Just c.send

Filter

x=yield
…

c.send

Consumer

x=yield
No c.send

Filter

x=yield
…

c.send

...

21

Coroutines Since Python 3.5

● In computer science, coroutines are
procedures that repeatedly cede control
to other coroutines and get it back again.

● In CS terms, Python generators can be
regarded as coroutines: they “yield”.

● But in Python, coroutines are part of the
asyncio module and do not use yield. So
generators are not “coroutines” in
Python.

22

asyncio

● A Python coroutine is defined using the
keywords async def instead of the usual
def.

● Coroutines use the await keyword to
cede control:

await mycor()
and to receive values:

x = await mycor()
● They return a value using return.
● Coroutines cannot use yield.

23

asyncio event loop

● The asyncio module provides for the
asynchronous execution of coroutines.
How?

● asyncio provides a task scheduler called
an event loop.

● You can create tasks manually with
loop.create_task().

● You can also give the loop a coroutine
object and it will create a task for you.

24

Coroutine Example

import asyncio

async def yourcor(i):
 await asyncio.sleep(1)
 return i**2

async def mycor():
 for i in range(1,5):
 print(f'i={i}', end='')
 x = await yourcor(i)
 print(f' x={x}')

25

Testing the Coroutine Example

>>> loop = asyncio.get_event_loop()
<_UnixSelectorEventLoop …>

>>> c = mycor()
<coroutine object mycor at …>

>>> loop.run_until_complete(c)
i=1 x=1
i=2 x=4
i=3 x=9
i=4 x=16

26

Adding Tasks To the Queue

>>> t = loop.create_task(yourcor(5))
<Task pending coro=yourcor() …>

>>> loop.run_until_complete(t)
25

27

Scheduling Non-Coroutines

● What if you want the event loop to
execute a regular function instead of a
coroutine?

● Use loop.call_soon() or loop.call_later()
● Instead of creating a Task, this creates a

Handle or TimerHandle and schedules it
for immediate or delayed execution.

28

Scheduling Non-Coroutines

def goof(i):
 print('i=', i)

>>> loop.call_soon(goof, 150)
<Handle goof(150) at …>

>>> loop.call_later(3,goof,250)
<TimerHandle when=…>

>>> loop.run_forever()
i=150

i=250

29

Futures

● A Future is an object representing a value
that might not have been computed yet.

● Created by loop.create_future()
● A coroutine can return a Future and then

later some other coroutine can fill in the
value.

● You can test whether a Future has
completed, or set up a callback that will
be called when the Future completes.

30

Threads

● Threads are lightweight units of execution
within a process that run simultaneously.

● Threads share one address space.
● If two threads modify the same memory

at the same time, bad things may
happen.

● “Thread-safe” code uses interlocks to
prevent this.

● loop.call_soon_threadsafe() lets
secondary threads access the event loop.

31

VEX AIM SDK Robot Interaction

● Uses websockets to talk to the robot.
● Four secondary threads:

– Image thread receives camera frames
– Status thread receives status updates:

● Sensor values and odometry
● Object detection results (“aivision”)
● Actions in progress (motion, sound)

– Command thread transmits commands
to the robot

– Audio thread transmits audio files to the
robot

32

VEX AIM SDK: Files

● aim.py contains most of the SDK

● vex.py contains type definitions and
important constants

33

VEX AIM SDK: Low-Level Control

● The SDK only provides simple, low-level
primitives.

● Example: how to drive forward 50 mm?
● robot.move_for(50, 0)

– Waits until move is complete.
– No other processing can take place while

waiting. This is not a good thing!
● robot.move_for(50, 0, wait=False)

– Doesn’t wait. Now it’s your responsibility
to notice when the robot stops moving.

34

vex-aim-tools

● Built on top of the VEX AIM SDK.
● Supports event-based programming so

actions run asynchronously and you can
be notified when the robot finishes an
action.

● Runs an asyncio event loop in a
secondary thread so the main thread is
available for the Python REPL: debug your
program while it runs.

● User programs run in the secondary
thread, using the event loop.

35

vex-aim-tools

● Provides asynchronous services:
– speech recognition
– speech generation
– GPT-4 interface
– other computationally intensive things

● Runs visualization tools (camera viewer,
worldmap viewer, etc.) in their own
threads.

36

Does This Look Like Fun? No???

● Explicitly managing asynchronous actions
and events could be a real pain.

● Is there a better way?

● State machines. See next lecture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

