
15-494/694: Cognitive Robotics

Lecture 2:

VEX AIM Software 
Architecture

and

Python Control Structure

Image from http://www.futuristgerd.com/2015/09/10 

Dave Touretzky

http://www.futuristgerd.com/2015/09/10


2

Robot Software Architecture

● A robot is a complex collection of 
interacting hardware/software systems.

● Example: navigation isn't just motion.
– Need vision to find landmarks.
– Head + body motion to point the camera.

● Layers of control:
– Low level: control one actuator
– Middle level: coordinate multiple actuators 

(e.g., wheels and kicker) for one task.
– High level: goal-directed behaviors.
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Python Control Concepts

● To understand the vex-aim-tools 
architecture, you must be familiar with:

– Iterators
– Generators
– Coroutines
– Asyncio: event loops and tasks
– Threads
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Iterators

>>> nums = [1,2,3,4]

>>> for x in nums: print(f'x = {x}')

x=1
x=2
x=3
x=4

>>> [x*x for x in nums]

[1, 4, 9, 16]

list comprehension
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What Makes an Object Iterable?

Defines an __iter__() method that returns an 
iterator.

>>> nums.__iter__

<method-wrapper '__iter__' of list 
object at 0x7ffa366baf48>

>>> nums.__iter__()

<list_iterator object at 0x7ffa34aa3c88>
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What Is an Iterator?

References a sequence and defines a 
__next__() method that returns the next 
item or raises StopIteration if there are no 
more items.

>>> a = nums.__iter__()

>>> a.__next__()

1

>>> a.__next__()

2
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StopIteration

>>> a.__next__()

3

>>> a.__next__()

4

>>> a.__next__()

Traceback: … StopIteration
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How a For Loop Works

for x in nums: print(f'x = {x}')

it = nums.__iter__()
try:
  while True:
    x = it.__next__()
    print(f'x = {x}')
except StopIteration:
  pass
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Lots of Things Are Iterable

>>> '__iter__' in dir([1,2,3])
True

>>> '__iter__' in dir(range(3,5))
True

>>> '__iter__' in dir({1,2,3})
True

>>> '__iter__' in dir({'foo' : 3})
True

list

range

set

dictionary
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Make Your Own Iterable Thing

    Needs an __iter__ method.

class MyIterable():

  def __init__(self,vals):
    self.vals = vals

  def __iter__(self):
    return MyIterator(self.vals)
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Make Your Own Iterator

      Needs a __next__ method.

class MyIterator():
  def __init__(self,vals):
    self.vals = vals
    self.index = 0

  def __next__(self):
    if self.index == len(self.vals):
      raise StopIteration
    else:
      self.index += 1
      return self.vals[self.index-1]
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Testing MyIterable

>>> a = MyIterable([1, 2, 3, 4])

>>> for x in a: print(f'x = {x}')
x = 1
x = 2
x = 3
x = 4

>>> [x**3 for x in a]

[1, 8, 27, 64]
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Generators

● Generators are coroutines that suspend 
their state using the yield keyword.

● Generators are represented by 
generator objects instead of functions.

● Generators can be used either as 
producers (similar to iterators) or as 
consumers.
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Generator As Producer

def myproducer(vals):
  print('myproducer called')
  index = 0
  while index < len(vals):
    print('yielding')
    yield vals[index]
    index += 1
  raise StopIteration

Because “yield” appears in myproducer, 
calling myproducer  doesn't actually run the 
function; it returns a generator object.
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Generator As Producer

>>> g = myproducer(['foo','bar'])
<generator object myproducer at …>

>>> next(g)
myproducer called
yielding
'foo'

>>> next(g)
yielding
'bar'
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Generator Expressions

Like a list comprehension, but uses 
parentheses instead of brackets: lazy.

>>> g = (x**2 for x in [1,2,3,4,5])
<generator object <genexpr> at …>

>>> next(g)
1

>>> g.__next__()
4
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list() exhausts a generator

>>> g
<generator object <genexpr> at …>

>>> list(g)
[9, 16, 25]
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Generator As Consumer

def myconsumer():
  print('myconsumer called')
  try:
    while True:
      x = yield
      print(f'{x} squared is {x**2}')
  except GeneratorExit:
    print('Generator closed.')

A statement 'x = yield' marks a consumer 
generator, which must be primed.
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Generator As Consumer

>>> c = myconsumer()
<generator object myconsumer at …>

>>> c.send(None)
myconsumer called

>>> for x in range(1,5): c.send(x)
1 squared is 1
2 squared is 4
… 

>>> c.close()
Generator closed.
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Generator Pipeline

Generators can be chained together for 
complex processing tasks.

That's all we're going to say about 
generators. What about coroutines?

Producer

No x=yield
Just c.send 

Filter

x=yield
…

c.send 

Consumer

x=yield
No c.send 

Filter

x=yield
…

c.send 

...
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Coroutines Since Python 3.5

● In computer science, coroutines are 
procedures that repeatedly cede control 
to other coroutines and get it back again.

● In CS terms, Python generators can be 
regarded as coroutines: they “yield”.

● But in Python, coroutines are part of the 
asyncio module and do not use yield. So 
generators are not “coroutines” in 
Python.
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asyncio

● A Python coroutine is defined using the 
keywords async def instead of the usual 
def.

● Coroutines use the await keyword to 
cede control:

await mycor()
and to receive values:

x = await mycor()
● They return a value using return.
● Coroutines cannot use yield.
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asyncio event loop

● The asyncio module provides for the 
asynchronous execution of coroutines. 
How?

● asyncio provides a task scheduler called 
an event loop.

● You can create tasks manually with 
loop.create_task().

● You can also give the loop a coroutine 
object and it will create a task for you.
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Coroutine Example

import asyncio

async def yourcor(i):
  await asyncio.sleep(1)
  return i**2

async def mycor():
  for i in range(1,5):
    print(f'i={i}', end='')
    x = await yourcor(i)
    print(f' x={x}')
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Testing the Coroutine Example

>>> loop = asyncio.get_event_loop()
<_UnixSelectorEventLoop …>

>>> c = mycor()
<coroutine object mycor at …>

>>> loop.run_until_complete(c)
i=1 x=1
i=2 x=4
i=3 x=9
i=4 x=16
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Adding Tasks To the Queue

>>> t = loop.create_task(yourcor(5))
<Task pending coro=yourcor() …>

>>> loop.run_until_complete(t)
25
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Scheduling Non-Coroutines

● What if you want the event loop to 
execute a regular function instead of a 
coroutine?

● Use loop.call_soon() or loop.call_later()
● Instead of creating a Task, this creates a 

Handle or TimerHandle and schedules it 
for immediate or delayed execution.
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Scheduling Non-Coroutines

def goof(i):
  print('i=', i)

>>> loop.call_soon(goof, 150)
<Handle goof(150) at …>

>>> loop.call_later(3,goof,250)
<TimerHandle when=…>

>>> loop.run_forever()
i=150

i=250
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Futures

● A Future is an object representing a value 
that might not have been computed yet.

● Created by loop.create_future()
● A coroutine can return a Future and then 

later some other coroutine can fill in the 
value.

● You can test whether a Future has 
completed, or set up a callback that will 
be called when the Future completes.
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Threads

● Threads are lightweight units of execution 
within a process that run simultaneously.

● Threads share one address space.
● If two threads modify the same memory 

at the same time, bad things may 
happen.

● “Thread-safe” code uses interlocks to 
prevent this.

● loop.call_soon_threadsafe() lets 
secondary threads access the event loop.
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VEX AIM SDK Robot Interaction

● Uses websockets to talk to the robot.
● Four secondary threads:

– Image thread receives camera frames
– Status thread receives status updates:

● Sensor values and odometry
● Object detection results (“aivision”)
● Actions in progress (motion, sound)

– Command thread transmits commands 
to the robot

– Audio thread transmits audio files to the 
robot
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VEX AIM SDK: Files

● aim.py contains most of the SDK

● vex.py contains type definitions and 
important constants
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VEX AIM SDK: Low-Level Control

● The SDK only provides simple, low-level 
primitives.

● Example: how to drive forward 50 mm?
● robot.move_for(50, 0)

– Waits until move is complete.
– No other processing can take place while 

waiting. This is not a good thing!
● robot.move_for(50, 0, wait=False)

– Doesn’t wait. Now it’s your responsibility 
to notice when the robot stops moving.
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vex-aim-tools

● Built on top of the VEX AIM SDK.
● Supports event-based programming so 

actions run asynchronously and you can 
be notified when the robot finishes an 
action.

● Runs an asyncio event loop in a 
secondary thread so the main thread is 
available for the Python REPL: debug your 
program while it runs.

● User programs run in the secondary 
thread, using the event loop.
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vex-aim-tools

● Provides asynchronous services:
– speech recognition
– speech generation
– GPT-4 interface
– other computationally intensive things

● Runs visualization tools (camera viewer, 
worldmap viewer, etc.) in their own 
threads.
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Does This Look Like Fun? No???

● Explicitly managing asynchronous actions 
and events could be a real pain.

● Is there a better way?

● State machines. See next lecture.
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