15-494/694: Cognitive Robotics Dave Touretzky

Lecture 6:

Robot Kinematics

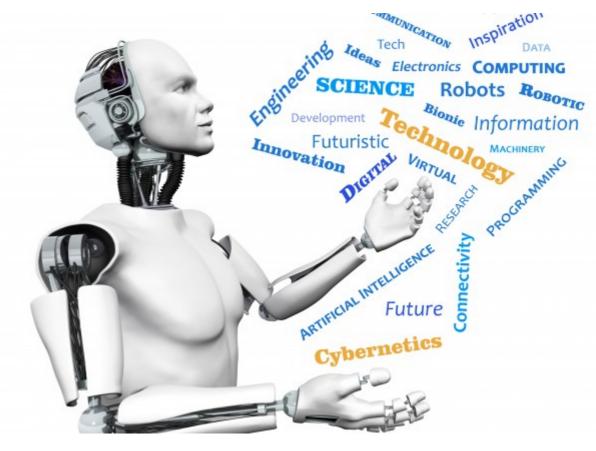
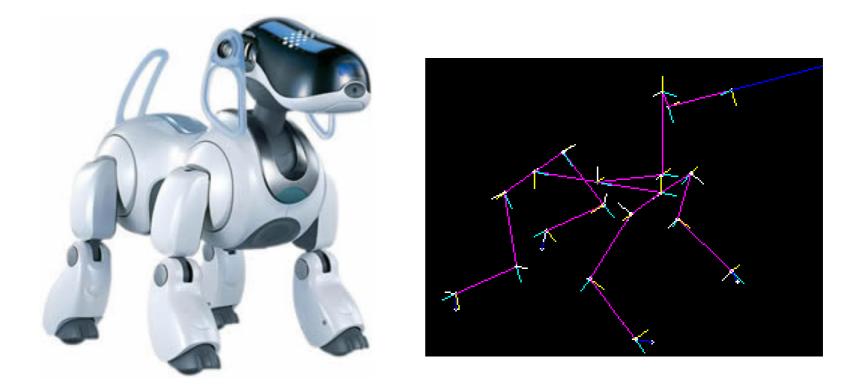


Image from http://www.futuristgerd.com/2015/09/10

Outline

- Kinematics is the study of how things move.
- Kinematic chains
- Reference frames
- Homogeneous coordinates
- Forward kinematics: calculating limb positions from joint angles. (Easy.)
- Inverse kinematics: calculating joint angles to achieve desired limb positions/trajectories. (Hard.)

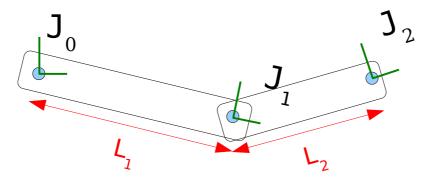
Robots As Kinematic Chains or Trees



- The root is called the *Base Frame*.
- Typically at the center of the robot's body..

Chains = Joints + Links

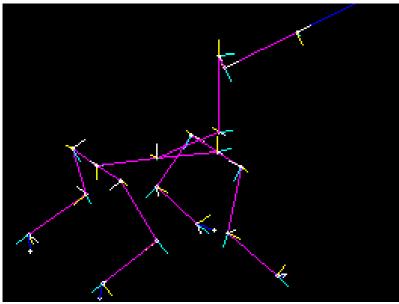
• A chain is a sequence of alternating joints and links.

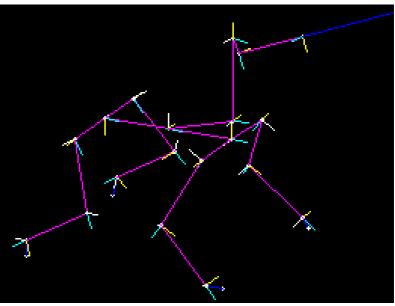


- We can use transformation matrices to calculate the position of the tip of the chain (joint J_2) from the joint angles θ_0 , θ_1 and the link lengths L_1 , L_2 .
- Each rotational joint has a rotation transform; each link has a translation transform.
- The math for this will be shown later in this lecture.

AIBO Kinematic Chains

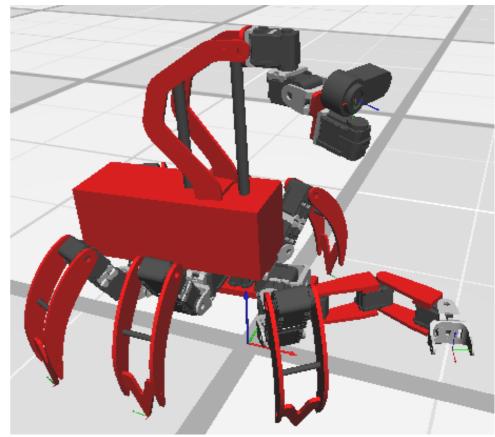
- The AIBO had 9 kinematic chains.
 - 4 for the legs
 - 1 for the head (the camera), 1 for the mouth
 - 3 for the IR range sensors
- All chains began at the center of the body (base frame).





Chiara Kinematic Chains

- The Chiara had 8 major kinematic chains:
 - Head / camera / IR
 - Arm
 - Left front leg
 - Right front leg (4-dof)
 - Left middle leg
 - Right middle leg
 - Left back leg
 - Right back leg



Calliope Kinematic Chains

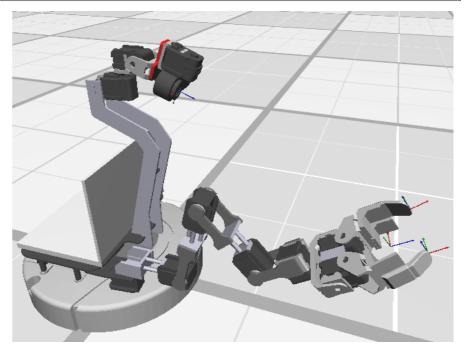
BaseFrame

center of axle WHEEL:L, WHEEL:R

NECK:PAN NECK:TILT CameraFrame

ARM:base ARM:shoulder ARM:elbow ARM:wrist ARM:wristrot **GripperFrame** ARM:gripperleft **LeftFingerFrame** ARM:gripperright **RightFingerFrame** In Tekkotsu you can use the DisplayKinTree demo to show the kinematic tree of the robot.

Root Control > Framework Demos > Kinematics Demos > DisplayKinTree



Cozmo Kinematic Chains

- Base frame is on the floor at the center of the front axle. Only two joints!
- Reference frames of interest:
 - Base frame
 - Head joint → Camera
 - Shoulder joint \rightarrow Lift
 - Center of rotation
 - All four wheels
 - Cliff detector
 - IR Headlight

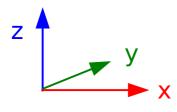
Cozmo's Lift: Four-Bar Linkage

VEX AIM Kinematic Chains

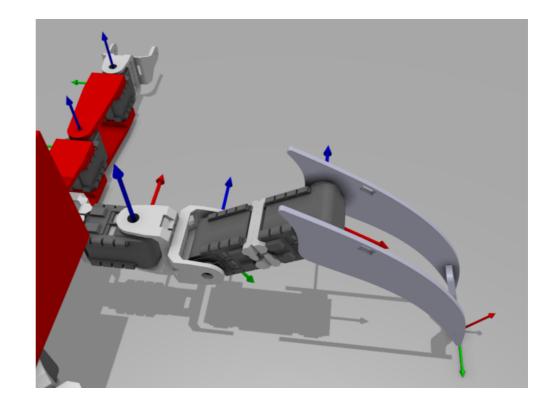
- Very simple kinematic structure:
 - Base frame (center of robot's body)
 - Camera frame
 - Kicker frame
 - World frame

Reference Frames

- Every joint has an associated reference frame.
- Additional reference frames for camera, toes, etc.



- Denavit-Hartenberg conventions: joints rotate about their z-axes.
- The x and y axes follow the *right* hand rule.



Chains of Reference Frames

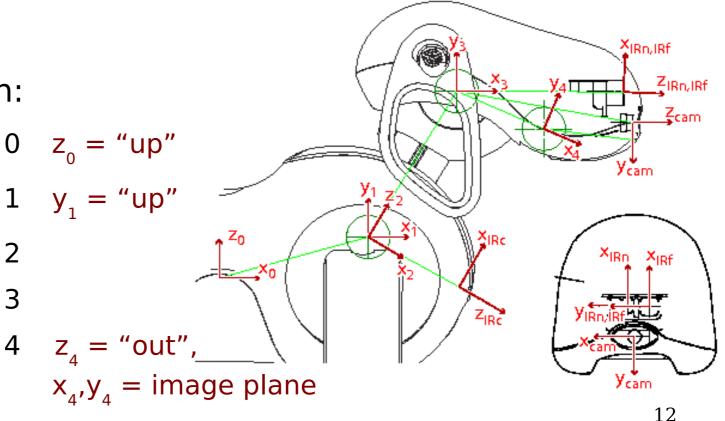
- BaseFrame: z is up, x is forward, y is left.
 - This convention is also used for world coordinates.
- Axis of rotation determines z for a joint.
- The head chain:
 - Base frame $0 z_0 = "up"$

2

3

4

- Tilt joint
- Pan joint
- Nod joint
- Camera



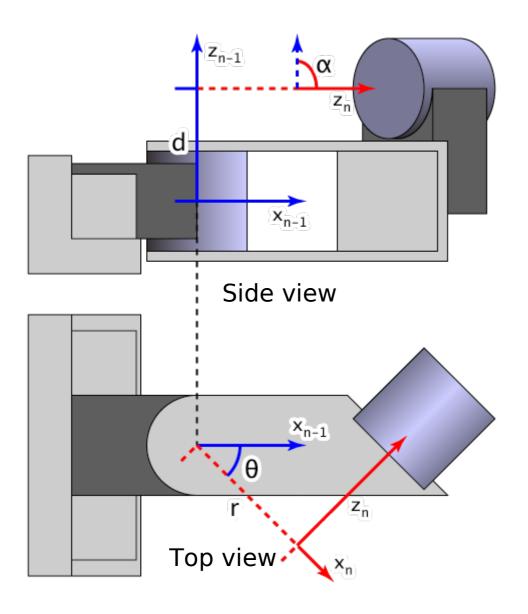
Moving Along A Chain

- Denavit-Hartenberg conventions specify how to express the relationship between one reference frame and the next.
- We use a modified version, to allow for kinematic trees instead of simple chains.
 - d: translation along previous z axis
 - θ : rotation around previous z axis
 - r: translation along new x axis
 - α : rotation around new x axis

Denavit-Hartenberg Video

http://www.youtube.com/watch?v=rA9tm0gTln8

Summary of D-H Conventions



1) Move by d along z_{n-1} 2) Rotate by θ around z_{n-1}

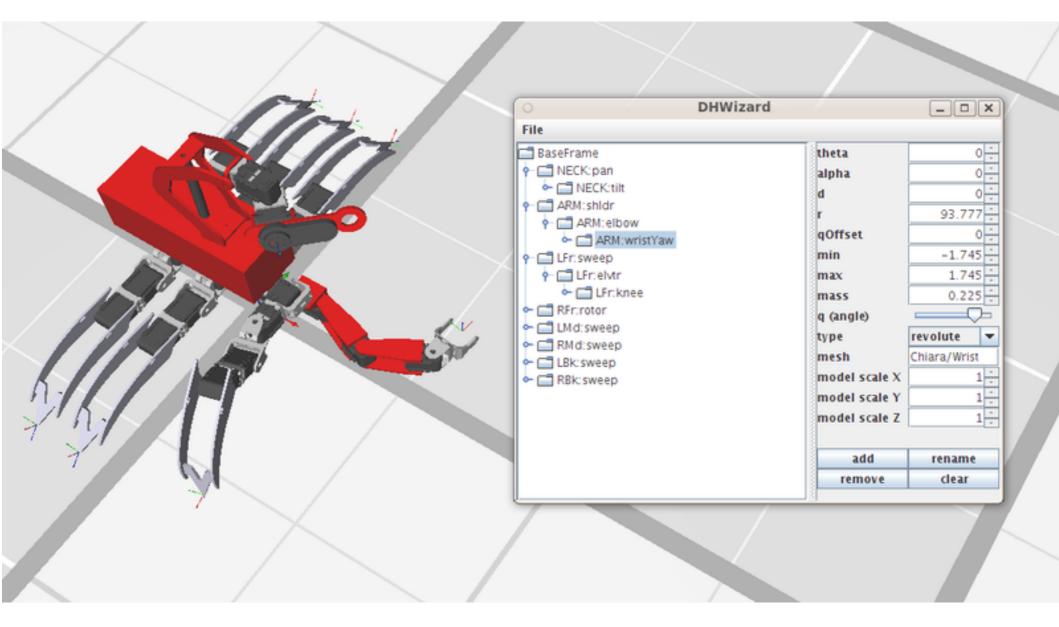
3) Move by r along x_n , which is the common normal of z_{n-1} and z_n

4) Rotate by α along \boldsymbol{x}_{n}

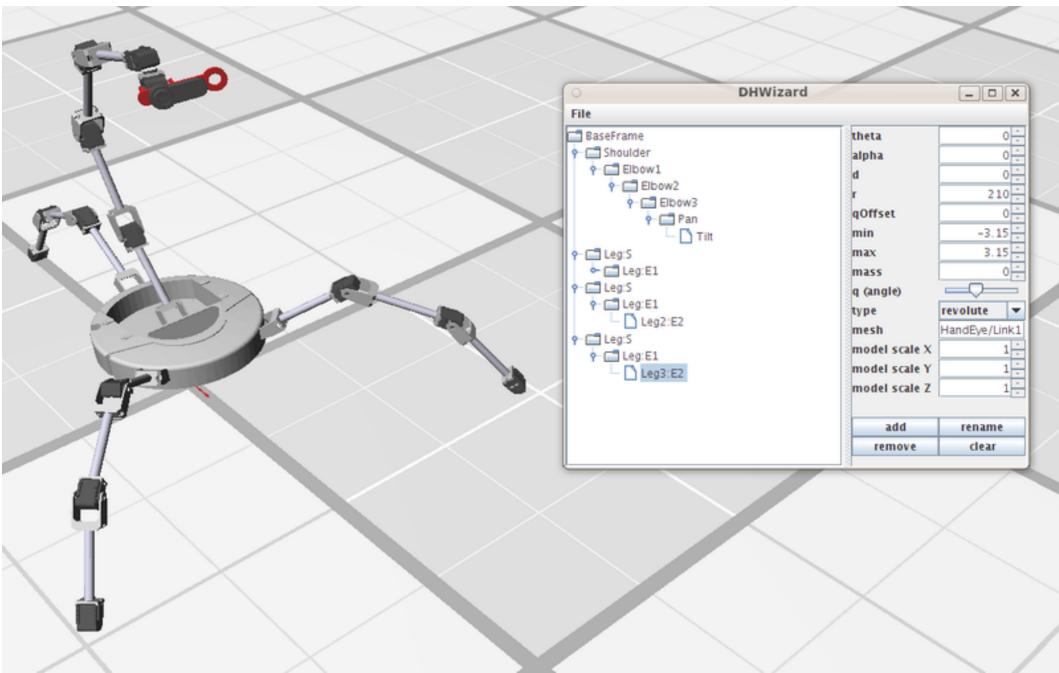
When z_{n-1} and z_n are parallel:

- d is arbitrary
- α is 0

Tekkotsu's DH Wizard Tool



DH Wizard



Now, The Math...

- How do we represent transformations from one reference frame to the next in a kinematic chain?
 - Homogeneous coordinates
 - Transformation matrices
- How do we perform these calculations in Python?

- The numpy package

• How do I get the computer to do the work for me?

Forward kinematics solver

Homogeneous Coordinates

- Represent a point in 3-space by an (3+1)-dimensional vector. (Extra component is an inverse scale factor.)
 - In "normal" form, last component is always 1.

$$\vec{\mathbf{v}} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- For points at infinite distance: last component is 0.

 Allows us to perform a variety of transformations using matrix multiplication:

Translation, Rotation, Scaling

vex-aim-tools uses 3D coordinates (so 4-dimensional vectors) for everything.

Translation Matrix

$$Translate(dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
$$Translate(dx, dy, dz) \cdot \vec{v} = \begin{bmatrix} x + dx \\ y + dy \\ z + dz \\ 1 \end{bmatrix}$$

Rotation About Z (In X-Y Plane)

$$RotZ(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0\\ -\sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} x\cos\theta + y\sin\theta \\ -x\sin\theta + y\cos\theta \\ z \\ 1 \end{bmatrix}$$

X

y z

1

General X-Y Transformation

Let θ be rotation angle in the x-y plane.
 Let dx, dy, dz be translation amounts.
 Let 1/s be a scale factor.

$$T = \begin{bmatrix} \cos\theta & \sin\theta & 0 & dx \\ -\sin\theta & \cos\theta & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & s \end{bmatrix} \quad \vec{v} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
$$T \quad \vec{v} = \begin{bmatrix} x\cos\theta + y\sin\theta + dx \\ -x\sin\theta + y\cos\theta + dy \\ z + dz \\ s \end{bmatrix} = \begin{bmatrix} (x\cos\theta + y\sin\theta + dx)/s \\ (-x\sin\theta + y\cos\theta + dy)/s \\ (z + dz)/s \\ 1 \end{bmatrix}$$

Transformations Are Composable

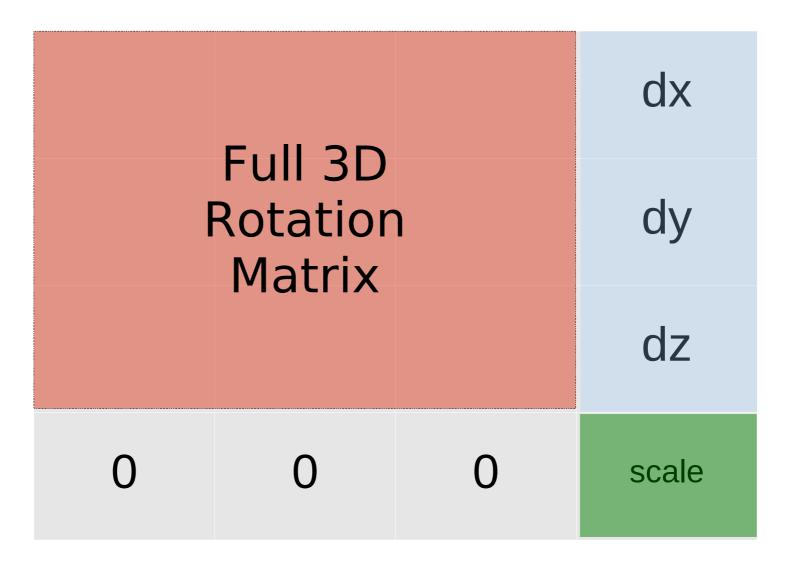
• To rotate in the x-y plane about point p: translate p to the origin, rotate, then translate back.

$$Translate(p) = \begin{bmatrix} 1 & 0 & 0 & p.x \\ 0 & 1 & 0 & p.y \\ 0 & 0 & 1 & p.z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$RotZ(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $RotateAbout(p, \theta) = Translate(p) \cdot RotZ(\theta) \cdot Translate(-p)$

Most General Form of a Transformation Matrix



Forward Kinematics

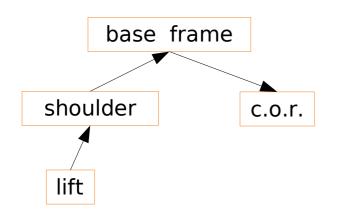
- Given a set of joint angles, calculate the position of an end-effector.
- Example: suppose the lift joint is at +30 degrees.
- What is the position of the bottom edge of the lift relative to the robot's center of rotation?

Solution to FK Problem

- Convert between reference frames in the kinematic tree:
 - Start at the lift edge reference frame (1)

26

- Up to the shoulder reference frame (2)
- Up to the base frame (3)
- Down to the center of rotation frame (4)

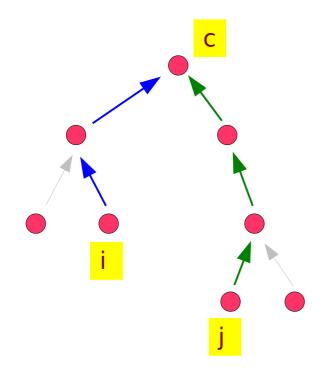


Converting Between Reference Frames

- Common conversions are between the base frame (body coordinates) and a limb or camera frame.
- Each step requires a transformation matrix.
- Where do these matrices come from?

- The Denavit-Hartenberg parameters: RotX(α) · Translate(r,0,d) · RotZ(θ)

From Frame i to Frame j



Search upward from i to common frame c, forming T_{ci} .

Search upward from j to common frame c, forming T_{cj} .

Compute inverse $T_{jc} = (T_{cj})^{-1}$

Desired transformation is: $T_{ji} = T_{jc} \cdot T_{ci}$

The numpy Package

- We will use numpy to represent coordinates and transformation matrices.
- Represent points as column vectors, which are n×1 matrices.

```
import numpy as np
v = np.array([ [5.75], [30], [115], [1] ])
w = np.array([ [17], [-4.2], [100], [1] ])
```

```
innerprod = v.T.dot(w) a 1x1 matrix
outerprod = v.dot(w.T) a 4x4 matrix
t = np.random.rand(4,4) random matrix
tinv = np.linalg.inv(t) matrix inverse
```

Inverse Kinematics

- Inverse kinematics finds the joint angles to put an effector at a particular point in space.
- Hard problem:
 - Solution space can be discontinuous
 - Can be highly nonlinear
 - Multiple solutions may be possible
 - Maybe no solution (so find closest approximation)
- Example: lookAtPoint(x,y,z)
 - point described in base frame coordinates
 - calculate head (and body?) angles

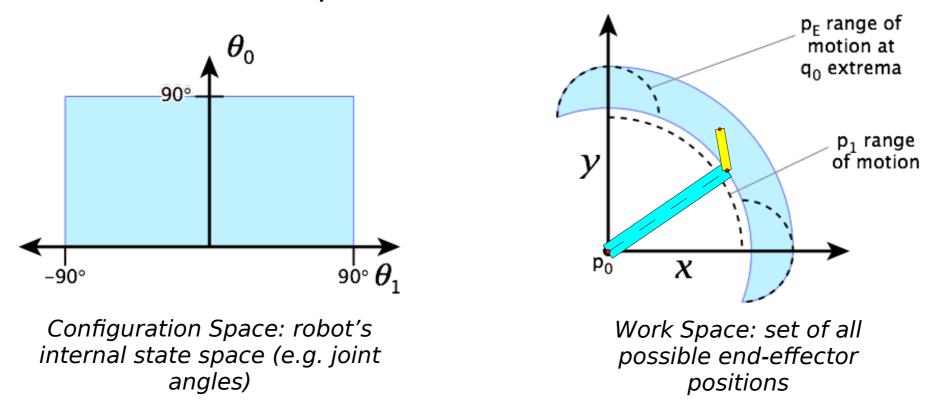
Solving the 1-Link Arm

Reachable if: $L_1 = \sqrt{x^2 + y^2}$

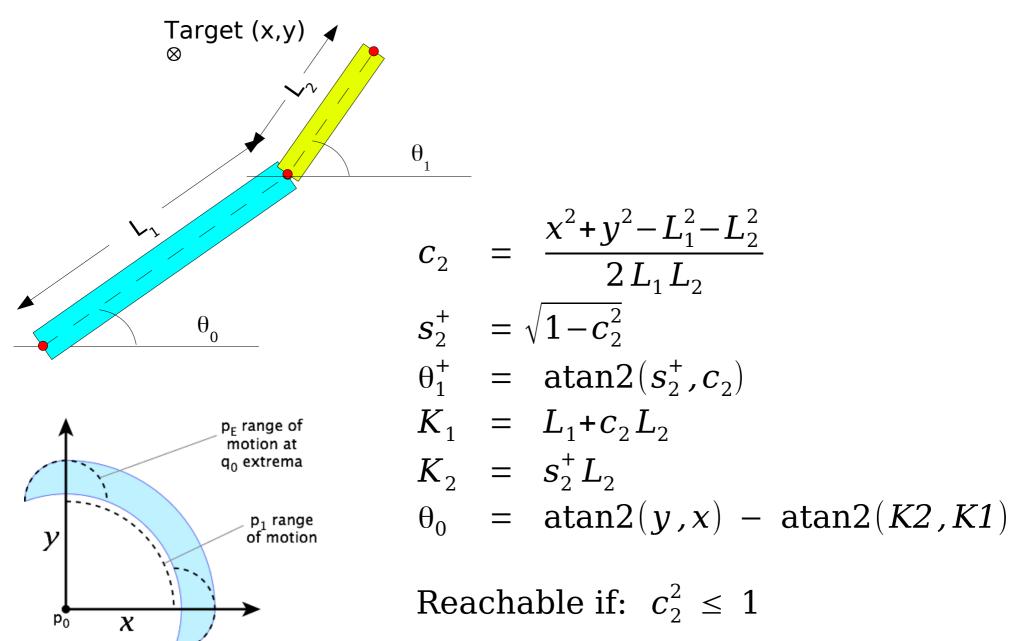
Solution: $\theta_0 = \operatorname{atan2}(y, x)$

Configuration Space vs. Work Space

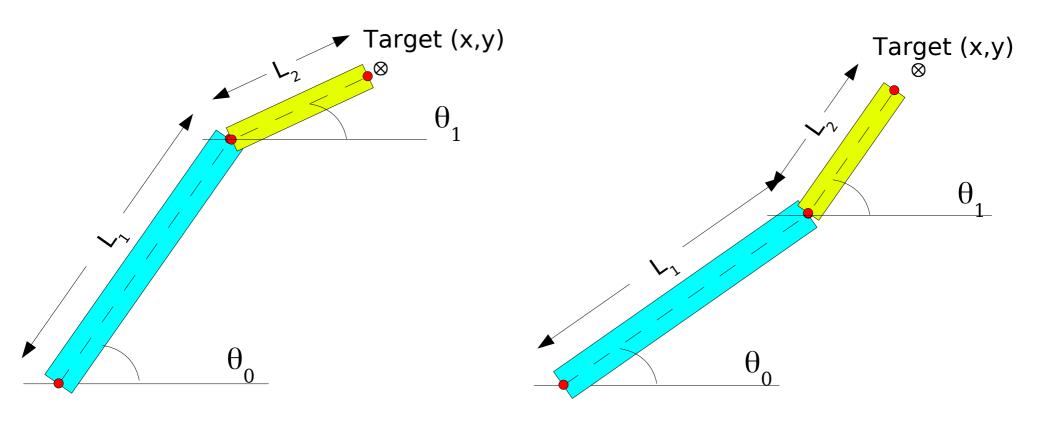
Consider a 2-link arm, with joint constraints $0^{\circ} < \theta_0 < 90^{\circ}$, $-90^{\circ} < \theta_1 < 90^{\circ}$



Solving the 2-Link Planar Arm



Two Possible Solutions



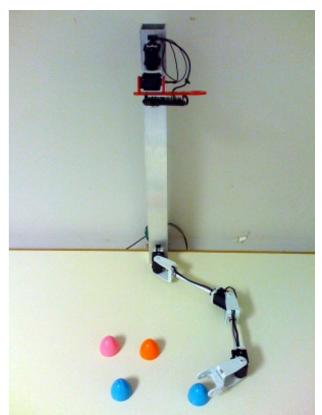
 $s_{2}^{-} = -\sqrt{1-c_{2}^{2}}$ $\theta_{1}^{-} = \operatorname{atan2}(s_{2}^{-}, c_{2})$ $s_{2}^{+} = \sqrt{1-c_{2}^{2}}$ $\theta_{1}^{+} = \operatorname{atan2}(s_{2}^{+}, c_{2})$

"Elbow up"

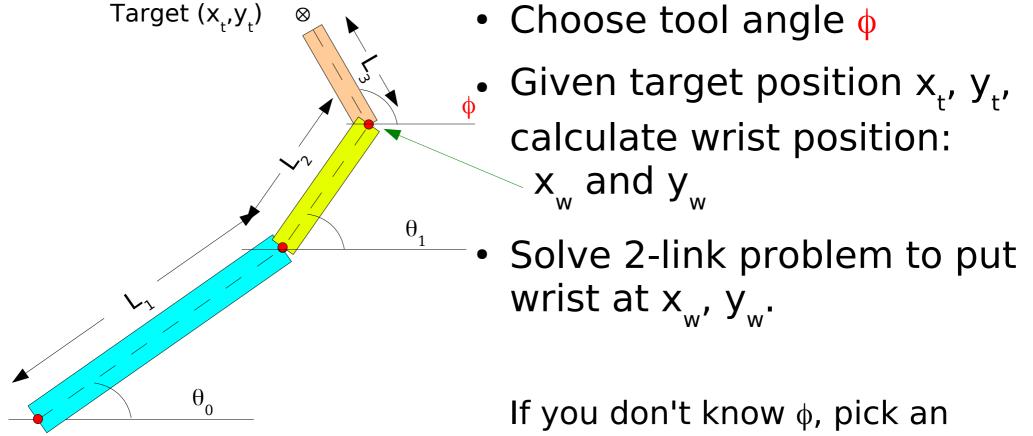
"Elbow down"

How Many Degrees of Freedom Are Enough?

- With 2 dof you can put the end effector at any point in the workspace.
- But you can't control end-effector orientation.
 - What if the arm is holding a screwdriver?
- With 3 dof in the same plane you can control both position and orientation.

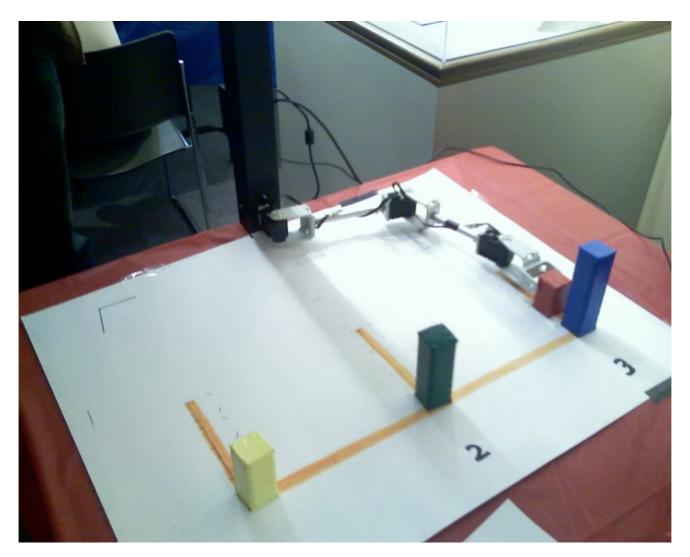


Solving the 3-Link Planar Arm



If you don't know ϕ , pick an arbitrary starting value and search from there until you find a solution that works.

Towers of Hanoi in the Plane



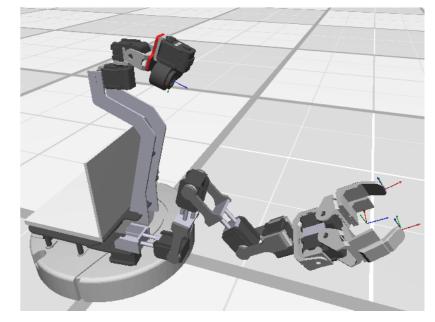
Video by Michel Brudzinski and Evan Patton at RPI. https://www.youtube.com/watch?v=QahSf4fbi0g Poses crafted by hand: IK solver wasn't written yet!

Customized Kinematics Solvers

- For some simple kinematic chains, such as a pan/tilt, we can write analytic solutions to the IK problem.
- For the general case, must use gradient descent search.

Calliope's 5-dof ARM

- Only one degree of freedom in the horizontal plane:
 - ARM:base



- Three degrees of freedom in a vertical plane:
 - ARM:shoulder, ARM:elbow, ARM:wrist
- An additional degree of freedom in an orthogonal plane:
 - ARM:wristrot
- Conclusion: can only partially control the 3D pose of the end-effector.
 - What kinds of motions can this arm not make?

Why VEX AIM Needs Kinematics

- Forward kinematics:
 - Calculate robot bounding box based on body plus carried objects, for collision avoidance during path planning.
- Inverse kinematics:
 - Put the kicker in the right place for object manipulation tasks.
 - Calculate required heading and base frame location given desired relationship between the kicker and an object.

Kinematics in vex-aim-tools

- Kinematics engine is in: aim_fsm/kine.py
- Robot's kinematic description is in: aim_fsm/aim_kin.py
- You can display kinematic info in simple_cli using the commands: show kine show kine joint_name