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Outline
● Kinematics is the study of how things 

move.
● Kinematic chains
● Reference frames
● Homogeneous coordinates
● Forward kinematics: calculating limb 

positions from joint angles. (Easy.)
● Inverse kinematics: calculating joint 

angles to achieve desired limb 
positions/trajectories.  (Hard.)
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Robots As Kinematic 
Chains or Trees

● The root is called the Base Frame.
● Typically at the center of the robot's body..
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Chains = Joints + Links

● A chain is a sequence of alternating joints and links.

● We can use transformation matrices to calculate the 
position of the tip of the chain (joint J

2
) from the joint 

angles q
0
, q

1
 and the link lengths L

1
, L

2
.

● Each rotational joint has a rotation transform; each 
link has a translation transform.

● The math for this will be shown later in this lecture.

L
1 L 2

 J
0

   J
1

   
J 2
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AIBO Kinematic Chains
● The AIBO had 9 kinematic chains.

– 4 for the legs
– 1 for the head (the camera), 1 for the mouth
– 3 for the IR range sensors

● All chains began at the center of the body (base 
frame).
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Chiara Kinematic Chains

● The Chiara had 8 major
kinematic chains:
– Head / camera / IR
– Arm
– Left front leg
– Right front leg (4-dof)
– Left middle leg
– Right middle leg
– Left back leg
– Right back leg
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Calliope Kinematic Chains

BaseFrame

  center of axle
    WHEEL:L, WHEEL:R

  NECK:PAN
    NECK:TILT
      CameraFrame

  ARM:base
    ARM:shoulder
      ARM:elbow
        ARM:wrist
          ARM:wristrot
            GripperFrame
            ARM:gripperleft
                LeftFingerFrame
            ARM:gripperright
                RightFingerFrame

In Tekkotsu you can use the 
DisplayKinTree demo to show the 
kinematic tree of the robot.

Root Control 
   > Framework Demos
      > Kinematics Demos
         > DisplayKinTree



8

Cozmo Kinematic Chains

● Base frame is on the floor at the center of 
the front axle. Only two joints!

● Reference frames of interest:
– Base frame
– Head joint → Camera
– Shoulder joint → Lift
– Center of rotation
– All four wheels
– Cliff detector
– IR Headlight
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Cozmo's Lift: Four-Bar Linkage
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VEX AIM Kinematic Chains

● Very simple kinematic structure:
– Base frame (center of robot’s body)
– Camera frame
– Kicker frame
– World frame
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Reference Frames

● Every joint has an associated reference frame.

● Additional reference frames for camera, toes, etc.

● Denavit-Hartenberg 
conventions: joints 
rotate about their 
z-axes.

● The x and y axes
follow the right
hand rule.

                  x

y
z
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Chains of Reference Frames
● BaseFrame: z is up, x is forward, y is left.

– This convention is also used for world coordinates.

● Axis of rotation determines z
for a joint.

● The head chain:

– Base frame 0 z
0
 = “up”

– Tilt joint 1 y
1
 = “up”

– Pan joint 2

– Nod joint 3

– Camera 4    z
4
 = “out”,

x
4
,y

4
 = image plane
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Moving Along A Chain

● Denavit-Hartenberg conventions specify 
how to express the relationship between 
one reference frame and the next.

● We use a modified version, to allow for 
kinematic trees instead of simple chains.

• d: translation along previous z axis
• q: rotation around previous z axis
• r: translation along new x axis
• a: rotation around new x axis
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Denavit-Hartenberg Video

http://www.youtube.com/watch?v=rA9tm0gTln8 

http://www.youtube.com/watch?v=rA9tm0gTln8
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Summary of D-H Conventions

1) Move by d along z
n-1

2)
 
Rotate by q around z

n-1

3)
 
Move by r along  x

n
, 

which is the common 
normal of z

n-1
 and z

n

4)
 
Rotate by a along x

n

When z
n-1

 and z
n
 are 

parallel:

● d is arbitrary

● a is 0

Side view

Top view
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Tekkotsu's DH Wizard Tool
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DH Wizard
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Now, The Math...

● How do we represent transformations from one 
reference frame to the next in a kinematic chain?

– Homogeneous coordinates

– Transformation matrices

● How do we perform these calculations in Python?

– The numpy package

● How do I get the computer to do the work for me?

– Forward kinematics solver
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Homogeneous Coordinates
● Represent a point in 3-space by an (3+1)-dimensional 

vector.  (Extra component is an inverse scale factor.)

– In “normal” form, last component is always 1.

– For points at infinite distance: last component is 0.
● Allows us to perform a variety of transformations using  

matrix multiplication:

 Translation,  Rotation, Scaling

● vex-aim-tools uses 3D coordinates (so 4-dimensional 
vectors) for everything.

v = [
x
y
z
1

]
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Translation Matrix

Translate(dx ,dy ,dz) = [
1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

] v⃗=[
x
y
z
1
]

Translate(dx ,dy ,dz) ⋅ v⃗ = [
x + dx
y + dy
z + dz
1

]
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Rotation About Z (In X-Y Plane)

RotZ (q) = [
cosq sinq 0 0
−sinq cosq 0 0
0 0 1 0
0 0 0 1

] v⃗ = [
x
y
z
1
]

RotZ (q) ⋅ v⃗ = [
x cosq + y sinq
−x sinq + y cosq

z
1

]
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General X-Y Transformation

● Let q be rotation angle in the x-y plane.
Let dx, dy, dz be translation amounts.
Let 1/s be a scale factor.

T = [
cosq sinq 0 dx
−sinq cosq 0 dy

0 0 1 dz
0 0 0 s

] v⃗ = [
x
y
z
1
]

T v⃗ = [
xcosq + y sinq + dx
−x sinq + ycosq + dy

z + dz
s

] = [
(xcosq + y sinq + dx)/s
(−x sinq + ycosq + dy )/s

(z + dz )/s
1

]
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Transformations Are 
Composable

● To rotate in the x-y plane about point p: translate p to 
the origin, rotate, then translate back.

Translate(p) = [
1 0 0 p.x
0 1 0 p. y
0 0 1 p. z
0 0 0 1

]
RotZ (q) = [

cosq sinq 0 0
−sinq cosq 0 0

0 0 1 0
0 0 0 1

]
RotateAbout (p ,q) = Translate(p) ⋅ RotZ (q) ⋅ Translate(−p)
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Most General Form of a 
Transformation Matrix

dx

dy

dz

0 0 0 scale

Full 3D
Rotation
Matrix
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Forward Kinematics

● Given a set of joint angles, calculate the 
position of an end-effector.

● Example: suppose the lift joint is at +30 
degrees.

● What is the position of the bottom edge 
of the lift relative to the robot's center of 
rotation?
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Solution to FK Problem

● Convert between reference frames in the 
kinematic tree:

– Start at the lift edge reference frame (1)
– Up to the shoulder reference frame (2)
– Up to the base frame (3)
– Down to the center of

rotation frame (4)

1

2

3 4lift

shoulder

base  frame

c.o.r.
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Converting Between 
Reference Frames

● Common conversions are between the 
base frame (body coordinates) and a limb 
or camera frame.

● Each step requires a transformation 
matrix.

● Where do these matrices come from?
– The Denavit-Hartenberg parameters:

     RotX(a) × Translate(r,0,d) × RotZ(q)
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From Frame i to Frame j

i

j

Search upward from i to 
common frame c, forming T

ci
.

Search upward from j to 
common frame c, forming T

cj
.

Compute inverse T
jc
 = (T

cj
)-1

Desired transformation is:
    Tji = T

jc
 × T

ci

ii

c
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The numpy Package
● We will use numpy to represent 

coordinates and transformation matrices.
● Represent points as column vectors, 

which are n´1 matrices.

import numpy as np

v = np.array([ [5.75], [30], [115], [1] ])

w = np.array([ [17], [-4.2], [100], [1] ])

innerprod = v.T.dot(w)     a 1x1 matrix

outerprod = v.dot(w.T)     a 4x4 matrix

t = np.random.rand(4,4)    random matrix

tinv = np.linalg.inv(t)    matrix inverse
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Inverse Kinematics

● Inverse kinematics finds the joint angles to put an 
effector at a particular point in space.

● Hard problem:

– Solution space can be discontinuous

– Can be highly nonlinear

– Multiple solutions may be possible

– Maybe no solution (so find closest approximation)

● Example:   lookAtPoint(x,y,z)

– point described in base frame coordinates

– calculate head (and body?) angles
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Solving the 1-Link Arm

L 1

               q
0

   Target (x,y)

Reachable if:  L1 = √x2
+y2

Solution:  q0 = atan2(y , x)
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Configuration Space vs.
Work Space

Consider a 2-link arm, with joint constraints 
    0° <q0 < 90°,       -90° < q1 < 90°

Configuration Space: robot’s 
internal state space (e.g. joint 

angles)

Work Space: set of all 
possible end-effector 

positions
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Solving the 2-Link Planar Arm

L 1

               q
0

Target (x,y)         


c2 =
x2

+y2
−L1

2
−L2

2

2L1L2

s2
+

= √1−c2
2

q1
+

= atan2(s2
+ ,c2)

K1 = L1+c2L2

K2 = s2
+L2

q0 = atan2(y , x) − atan2(K2,K1)

Reachable if:  c2
2
≤ 1

L 2

               q
1
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Two Possible Solutions

L 1

               q
0

Target (x,y)
   

s2
+

= √1−c2
2

q1
+

= atan2(s2
+ ,c2)

L 2

               q
1

L 1

               q
0

    Target (x,y)
     L 2

               q
1

s2
−

= −√1−c2
2

q1
−

= atan2(s2
− ,c2)

“Elbow up” “Elbow down”
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How Many Degrees of Freedom 
Are Enough?

● With 2 dof you can put the end effector at any 
point in the workspace.

● But  you can't control end-effector orientation.

– What if the arm is holding
a screwdriver?

● With 3 dof in the same plane
you can control both position
and orientation.
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L
3

Solving the 3-Link Planar Arm

L 1

               q
0

Target (x
t
,y

t
)    

L 2

               q
1

               f

● Choose tool angle f

● Given target position x
t
, y

t
,

calculate wrist position:
  x

w
 and y

w

● Solve 2-link problem to put 
wrist at x

w
, y

w
.

If you don't know f, pick an 
arbitrary starting value and 
search from there until you 
find a solution that works.
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Towers of Hanoi in the Plane

Video by Michel Brudzinski and Evan Patton at RPI.
       https://www.youtube.com/watch?v=QahSf4fbi0g 
Poses crafted by hand: IK solver wasn't written yet!

https://www.youtube.com/watch?v=QahSf4fbi0g
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Customized Kinematics Solvers

● For some simple kinematic chains, such as a 
pan/tilt, we can write analytic solutions to the IK 
problem.

● For the general case, must use gradient 
descent search.

See tentacle videos.
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Calliope's 5-dof ARM
● Only one degree of freedom in

the horizontal plane:

– ARM:base

● Three degrees of freedom in a vertical plane:

– ARM:shoulder, ARM:elbow, ARM:wrist

● An additional degree of freedom in an orthogonal plane:

– ARM:wristrot

● Conclusion: can only partially control the 3D pose of the 
end-effector.

– What kinds of motions  can this arm not make?
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Why VEX AIM Needs Kinematics

● Forward kinematics:
– Calculate robot bounding box based on 

body plus carried objects, for collision 
avoidance during path planning.

● Inverse kinematics:
– Put the kicker in the right place for object 

manipulation tasks.
– Calculate required heading and base 

frame location given desired relationship 
between the kicker and an object.
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Kinematics in vex-aim-tools

● Kinematics engine is in:
     aim_fsm/kine.py

● Robot’s kinematic description is in:
     aim_fsm/aim_kin.py

● You can display kinematic info in 
simple_cli using the commands:

show kine
show kine joint_name
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