
15-494/694: Cognitive Robotics

Lecture 6:

Robot Kinematics

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Outline
● Kinematics is the study of how things

move.
● Kinematic chains
● Reference frames
● Homogeneous coordinates
● Forward kinematics: calculating limb

positions from joint angles. (Easy.)
● Inverse kinematics: calculating joint

angles to achieve desired limb
positions/trajectories. (Hard.)

3

Robots As Kinematic
Chains or Trees

● The root is called the Base Frame.
● Typically at the center of the robot's body..

4

Chains = Joints + Links

● A chain is a sequence of alternating joints and links.

● We can use transformation matrices to calculate the
position of the tip of the chain (joint J

2
) from the joint

angles q
0
, q

1
 and the link lengths L

1
, L

2
.

● Each rotational joint has a rotation transform; each
link has a translation transform.

● The math for this will be shown later in this lecture.

L
1 L 2

 J
0

 J
1

J 2

5

AIBO Kinematic Chains
● The AIBO had 9 kinematic chains.

– 4 for the legs
– 1 for the head (the camera), 1 for the mouth
– 3 for the IR range sensors

● All chains began at the center of the body (base
frame).

6

Chiara Kinematic Chains

● The Chiara had 8 major
kinematic chains:
– Head / camera / IR
– Arm
– Left front leg
– Right front leg (4-dof)
– Left middle leg
– Right middle leg
– Left back leg
– Right back leg

7

Calliope Kinematic Chains

BaseFrame

 center of axle
 WHEEL:L, WHEEL:R

 NECK:PAN
 NECK:TILT
 CameraFrame

 ARM:base
 ARM:shoulder
 ARM:elbow
 ARM:wrist
 ARM:wristrot
 GripperFrame
 ARM:gripperleft
 LeftFingerFrame
 ARM:gripperright
 RightFingerFrame

In Tekkotsu you can use the
DisplayKinTree demo to show the
kinematic tree of the robot.

Root Control
 > Framework Demos
 > Kinematics Demos
 > DisplayKinTree

8

Cozmo Kinematic Chains

● Base frame is on the floor at the center of
the front axle. Only two joints!

● Reference frames of interest:
– Base frame
– Head joint → Camera
– Shoulder joint → Lift
– Center of rotation
– All four wheels
– Cliff detector
– IR Headlight

9

Cozmo's Lift: Four-Bar Linkage

10

VEX AIM Kinematic Chains

● Very simple kinematic structure:
– Base frame (center of robot’s body)
– Camera frame
– Kicker frame
– World frame

11

Reference Frames

● Every joint has an associated reference frame.

● Additional reference frames for camera, toes, etc.

● Denavit-Hartenberg
conventions: joints
rotate about their
z-axes.

● The x and y axes
follow the right
hand rule.

 x

y
z

12

Chains of Reference Frames
● BaseFrame: z is up, x is forward, y is left.

– This convention is also used for world coordinates.

● Axis of rotation determines z
for a joint.

● The head chain:

– Base frame 0 z
0
 = “up”

– Tilt joint 1 y
1
 = “up”

– Pan joint 2

– Nod joint 3

– Camera 4 z
4
 = “out”,

x
4
,y

4
 = image plane

13

Moving Along A Chain

● Denavit-Hartenberg conventions specify
how to express the relationship between
one reference frame and the next.

● We use a modified version, to allow for
kinematic trees instead of simple chains.

• d: translation along previous z axis
• q: rotation around previous z axis
• r: translation along new x axis
• a: rotation around new x axis

14

Denavit-Hartenberg Video

http://www.youtube.com/watch?v=rA9tm0gTln8

http://www.youtube.com/watch?v=rA9tm0gTln8

15

Summary of D-H Conventions

1) Move by d along z
n-1

2)

Rotate by q around z

n-1

3)

Move by r along x

n
,

which is the common
normal of z

n-1
 and z

n

4)

Rotate by a along x

n

When z
n-1

 and z
n
 are

parallel:

● d is arbitrary

● a is 0

Side view

Top view

16

Tekkotsu's DH Wizard Tool

17

DH Wizard

18

Now, The Math...

● How do we represent transformations from one
reference frame to the next in a kinematic chain?

– Homogeneous coordinates

– Transformation matrices

● How do we perform these calculations in Python?

– The numpy package

● How do I get the computer to do the work for me?

– Forward kinematics solver

19

Homogeneous Coordinates
● Represent a point in 3-space by an (3+1)-dimensional

vector. (Extra component is an inverse scale factor.)

– In “normal” form, last component is always 1.

– For points at infinite distance: last component is 0.
● Allows us to perform a variety of transformations using

matrix multiplication:

 Translation, Rotation, Scaling

● vex-aim-tools uses 3D coordinates (so 4-dimensional
vectors) for everything.

v = [
x
y
z
1

]

20

Translation Matrix

Translate(dx ,dy ,dz) = [
1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

] v⃗=[
x
y
z
1
]

Translate(dx ,dy ,dz) ⋅ v⃗ = [
x + dx
y + dy
z + dz
1

]

21

Rotation About Z (In X-Y Plane)

RotZ (q) = [
cosq sinq 0 0
−sinq cosq 0 0
0 0 1 0
0 0 0 1

] v⃗ = [
x
y
z
1
]

RotZ (q) ⋅ v⃗ = [
x cosq + y sinq
−x sinq + y cosq

z
1

]

22

General X-Y Transformation

● Let q be rotation angle in the x-y plane.
Let dx, dy, dz be translation amounts.
Let 1/s be a scale factor.

T = [
cosq sinq 0 dx
−sinq cosq 0 dy

0 0 1 dz
0 0 0 s

] v⃗ = [
x
y
z
1
]

T v⃗ = [
xcosq + y sinq + dx
−x sinq + ycosq + dy

z + dz
s

] = [
(xcosq + y sinq + dx)/s
(−x sinq + ycosq + dy)/s

(z + dz)/s
1

]

23

Transformations Are
Composable

● To rotate in the x-y plane about point p: translate p to
the origin, rotate, then translate back.

Translate(p) = [
1 0 0 p.x
0 1 0 p. y
0 0 1 p. z
0 0 0 1

]
RotZ (q) = [

cosq sinq 0 0
−sinq cosq 0 0

0 0 1 0
0 0 0 1

]
RotateAbout (p ,q) = Translate(p) ⋅ RotZ (q) ⋅ Translate(−p)

24

Most General Form of a
Transformation Matrix

dx

dy

dz

0 0 0 scale

Full 3D
Rotation
Matrix

25

Forward Kinematics

● Given a set of joint angles, calculate the
position of an end-effector.

● Example: suppose the lift joint is at +30
degrees.

● What is the position of the bottom edge
of the lift relative to the robot's center of
rotation?

26

Solution to FK Problem

● Convert between reference frames in the
kinematic tree:

– Start at the lift edge reference frame (1)
– Up to the shoulder reference frame (2)
– Up to the base frame (3)
– Down to the center of

rotation frame (4)

1

2

3 4lift

shoulder

base frame

c.o.r.

27

Converting Between
Reference Frames

● Common conversions are between the
base frame (body coordinates) and a limb
or camera frame.

● Each step requires a transformation
matrix.

● Where do these matrices come from?
– The Denavit-Hartenberg parameters:

 RotX(a) × Translate(r,0,d) × RotZ(q)

28

From Frame i to Frame j

i

j

Search upward from i to
common frame c, forming T

ci
.

Search upward from j to
common frame c, forming T

cj
.

Compute inverse T
jc
 = (T

cj
)-1

Desired transformation is:
 Tji = T

jc
 × T

ci

ii

c

29

The numpy Package
● We will use numpy to represent

coordinates and transformation matrices.
● Represent points as column vectors,

which are n´1 matrices.

import numpy as np

v = np.array([[5.75], [30], [115], [1]])

w = np.array([[17], [-4.2], [100], [1]])

innerprod = v.T.dot(w) a 1x1 matrix

outerprod = v.dot(w.T) a 4x4 matrix

t = np.random.rand(4,4) random matrix

tinv = np.linalg.inv(t) matrix inverse

30

Inverse Kinematics

● Inverse kinematics finds the joint angles to put an
effector at a particular point in space.

● Hard problem:

– Solution space can be discontinuous

– Can be highly nonlinear

– Multiple solutions may be possible

– Maybe no solution (so find closest approximation)

● Example: lookAtPoint(x,y,z)

– point described in base frame coordinates

– calculate head (and body?) angles

31

Solving the 1-Link Arm

L 1

 q
0

 Target (x,y)

Reachable if: L1 = √x2
+y2

Solution: q0 = atan2(y , x)

32

Configuration Space vs.
Work Space

Consider a 2-link arm, with joint constraints
 0° <q0 < 90°, -90° < q1 < 90°

Configuration Space: robot’s
internal state space (e.g. joint

angles)

Work Space: set of all
possible end-effector

positions

33

Solving the 2-Link Planar Arm

L 1

 q
0

Target (x,y)

c2 =
x2

+y2
−L1

2
−L2

2

2L1L2

s2
+

= √1−c2
2

q1
+

= atan2(s2
+ ,c2)

K1 = L1+c2L2

K2 = s2
+L2

q0 = atan2(y , x) − atan2(K2,K1)

Reachable if: c2
2
≤ 1

L 2

 q
1

34

Two Possible Solutions

L 1

 q
0

Target (x,y)

s2
+

= √1−c2
2

q1
+

= atan2(s2
+ ,c2)

L 2

 q
1

L 1

 q
0

 Target (x,y)
 L 2

 q
1

s2
−

= −√1−c2
2

q1
−

= atan2(s2
− ,c2)

“Elbow up” “Elbow down”

35

How Many Degrees of Freedom
Are Enough?

● With 2 dof you can put the end effector at any
point in the workspace.

● But you can't control end-effector orientation.

– What if the arm is holding
a screwdriver?

● With 3 dof in the same plane
you can control both position
and orientation.

36

L
3

Solving the 3-Link Planar Arm

L 1

 q
0

Target (x
t
,y

t
)

L 2

 q
1

 f

● Choose tool angle f

● Given target position x
t
, y

t
,

calculate wrist position:
 x

w
 and y

w

● Solve 2-link problem to put
wrist at x

w
, y

w
.

If you don't know f, pick an
arbitrary starting value and
search from there until you
find a solution that works.

37

Towers of Hanoi in the Plane

Video by Michel Brudzinski and Evan Patton at RPI.
 https://www.youtube.com/watch?v=QahSf4fbi0g
Poses crafted by hand: IK solver wasn't written yet!

https://www.youtube.com/watch?v=QahSf4fbi0g

38

Customized Kinematics Solvers

● For some simple kinematic chains, such as a
pan/tilt, we can write analytic solutions to the IK
problem.

● For the general case, must use gradient
descent search.

See tentacle videos.

39

Calliope's 5-dof ARM
● Only one degree of freedom in

the horizontal plane:

– ARM:base

● Three degrees of freedom in a vertical plane:

– ARM:shoulder, ARM:elbow, ARM:wrist

● An additional degree of freedom in an orthogonal plane:

– ARM:wristrot

● Conclusion: can only partially control the 3D pose of the
end-effector.

– What kinds of motions can this arm not make?

40

Why VEX AIM Needs Kinematics

● Forward kinematics:
– Calculate robot bounding box based on

body plus carried objects, for collision
avoidance during path planning.

● Inverse kinematics:
– Put the kicker in the right place for object

manipulation tasks.
– Calculate required heading and base

frame location given desired relationship
between the kicker and an object.

41

Kinematics in vex-aim-tools

● Kinematics engine is in:
 aim_fsm/kine.py

● Robot’s kinematic description is in:
 aim_fsm/aim_kin.py

● You can display kinematic info in
simple_cli using the commands:

show kine
show kine joint_name

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

