15-494/694: Cognitive Robotics

Dave Touretzky

Lecture 5:

Particle Filters and Localization

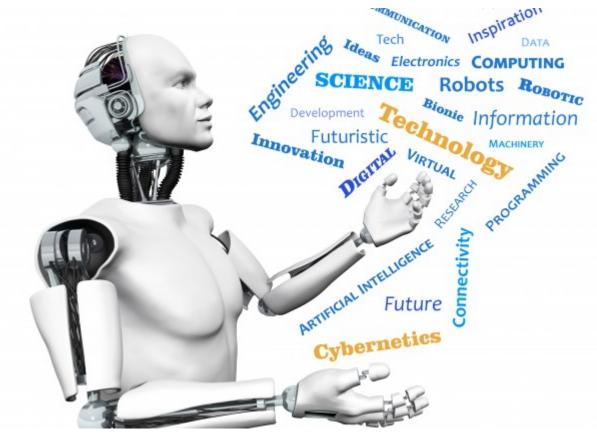


Image from http://www.futuristgerd.com/2015/09/10

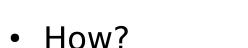
Outline

- Probabilistic Robotics
- Belief States
- Parametric and non-parametric representations
- Motion model
- Sensor model
- Evaluation and resampling
- Demos

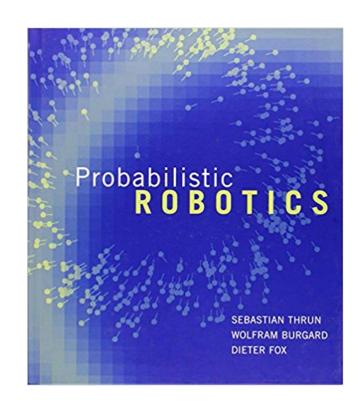
Probabilistic Robotics

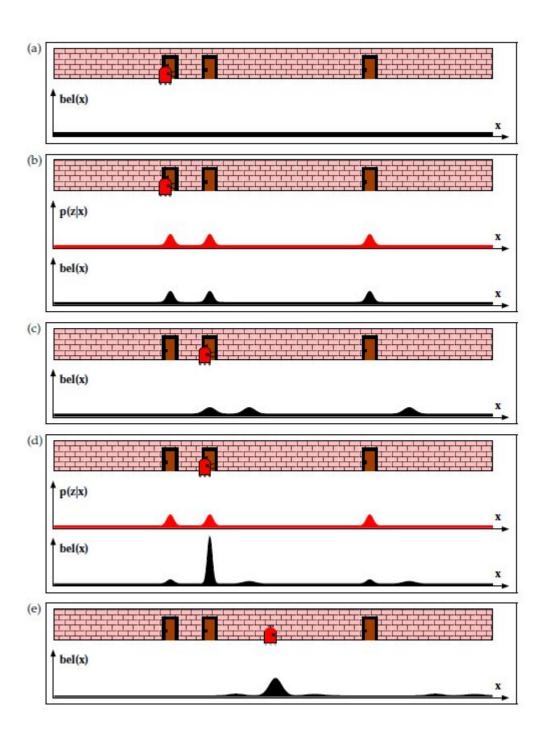
- The world is uncertain:
 - Sensors are noisy and inaccurate.
 - Actuators are unreliable.
 - Other actors can affect the world.

Embrace the uncertainty!



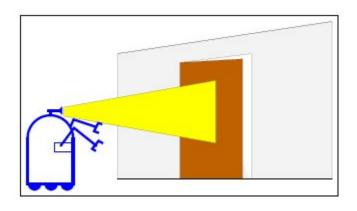
- Explicitly model our uncertainty about sensors and actions.
- Replace discrete states with beliefs: probability distributions over states.
- Use Bayesian filtering to update our beliefs.





Beliefs

are probability distributions



Figures from Thrun, Burgard, and Fox (2005) *Probabilistic Robotics*

Some Notation

- x_t = state at time t
- $u_t = control \ signal \ at \ time \ t$
- $z_t = sensor input at time t$
- We don't know x_t with certainty; we have an *a priori* (before measurement) belief $\overline{bel}(x_t)$ about it:

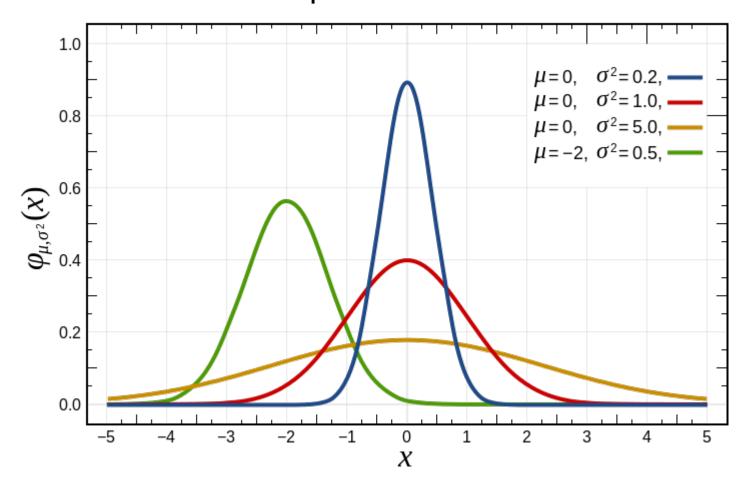
$$\overline{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})$$

New sensor data z_t updates our belief, giving an a posterior belief bel(x_t):

$$bel(x_t) = \eta p(z_t | x_t) \cdot \overline{bel}(x_t)$$

Parametric Representations (1)

- Represent a probability distribution using an analytic function described by a small number of parameters.
- Most common example: Gaussian



Parametric Representations (2)

Good points:

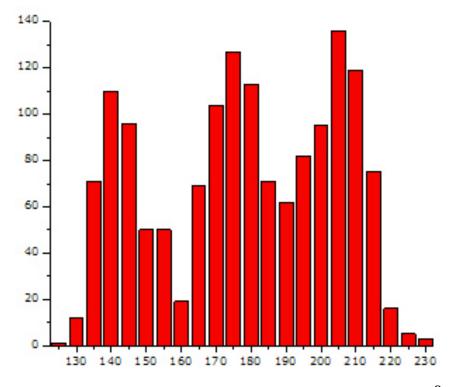
- Compact representation: just a few numbers
 - For a Gaussian: mean μ and variance σ^2
- Fast to compute
- Nice mathematical properties
- Easy to sample from

Drawbacks:

- May not match the data very well
- Can give bad results if the fit is poor

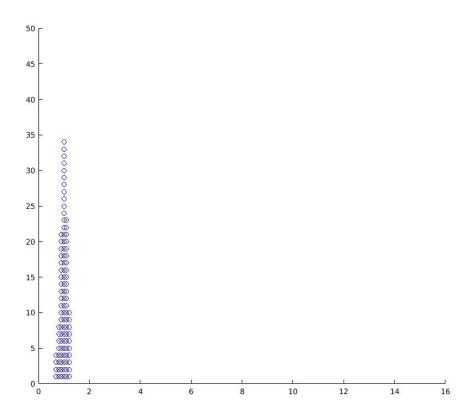
Nonparametric Representations

- No preconceived formula for the distribution.
- Instead, maintain a representation of the actual distribution, via sampling.
- Example: histogram
- Good points:
 - Can represent completely arbitrary distributions
- Drawbacks:
 - Requires more storage
 - Expensive to update



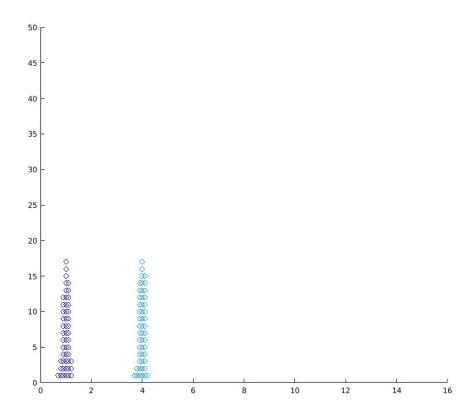
Where Is The Robot?

- Parametric: the robot is at x=1 with $\sigma^2 = 0.2$
- Non-parametric: 100 samples indicating robot position.



Where Is The Robot?

- Parametric: fail (or put robot at the mean: x=2.5)
- Non-parametric: 100 samples.



Particle Filters

- A particle filter is an efficient non-parametric representation of a distribution.
- Each particle represents a sample drawn from the distribution.
- As the distribution changes, we update the particles.
- Three kinds of updating:
 - Change the *value* the particle encodes (motion model).
 - Change the weight assigned to the particle (sensor model).
 - Resample the distribution, getting a fresh set of particles with initially equal weights.

Bayesian Filter, part 1

- Our belief about the robot's position x at time t-1 is a probability distribution p(x_{t-1}), which we represent as a set of samples.
- At time t the robot moves, following some control signal
 u_t, producing a new distribution p(x_t).
- A motion model defines how our new prediction $\overline{bel}(x_t)$ arises from applying u_t .

$$\overline{bel}(x_t) = \int p(x_t|x_{t-1}, u_t) \cdot bel(x_{t-1}) dx_{t-1}$$

Why Are We Integrating?

$$\overline{bel}(x_t) = \int_{x_{t-1}} p(x_t|x_{t-1}, u_t) \cdot bel(x_{t-1}) dx_{t-1}$$

Probability of arriving at x_t given that we were previously at x_{t-1} and got control signal u_t .

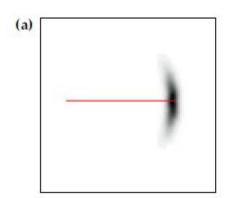
Belief that we All were previously possible at location x_{t-1} previous locations x_{t-1}

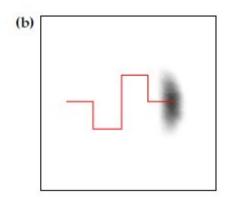
Integrated over all possible starting locations x_{t-1} .

Motion Models

- Motion models express the noisiness of motion u₊.
- Typically use a simple parametric distribution.
 - Easy to sample.
- We represented the distribution $p(x_{t-1})$ as a set of a posteriori samples $bel(x_{t-1})$. Motion gives us $\overline{bel}(x_{t})$.
- How do we sample $\overline{bel}(x_t)$?
- Solution: for each sample in bel(x_{t-1}), draw a value from the motion model's distribution and add it to the sample value.

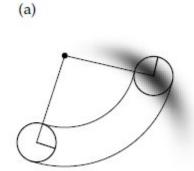
Motion Model $p(x_t|x_{t-1},u_t)$



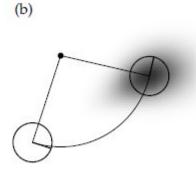


(c)

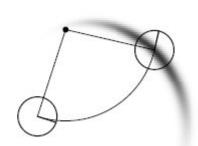
Figures from Thrun, Burgard, and Fox (2005) *Probabilistic Robotics*



Moderate Noise Values

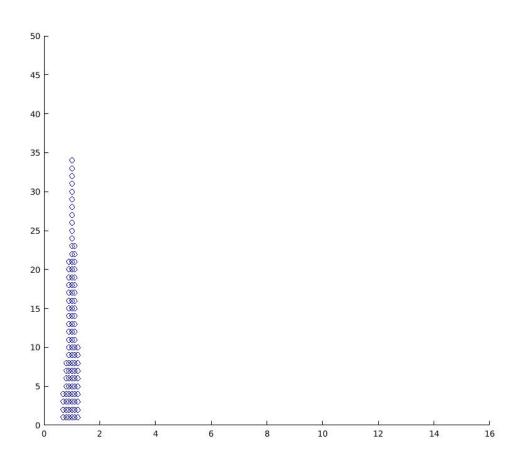


High Translational Uncertainty

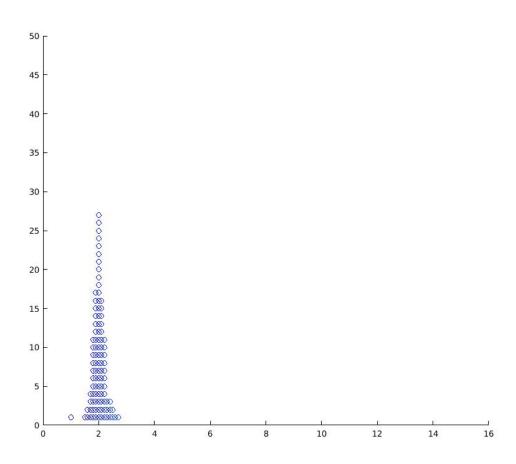


High Rotational Uncertainty

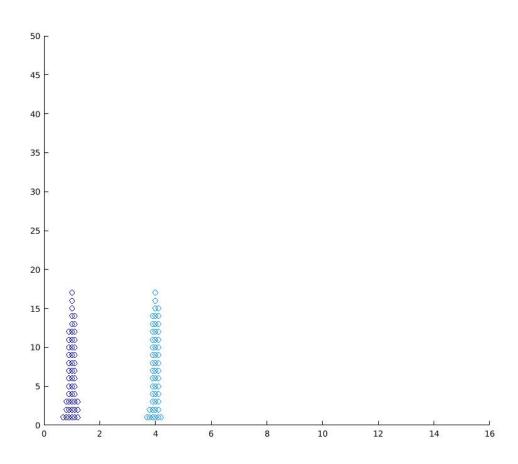
Robot at t=0: bel(x_0)



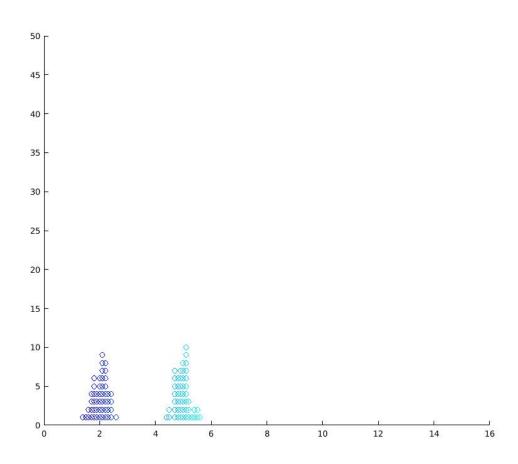
Prediction at t=1: $\overline{bel}(x_1)$



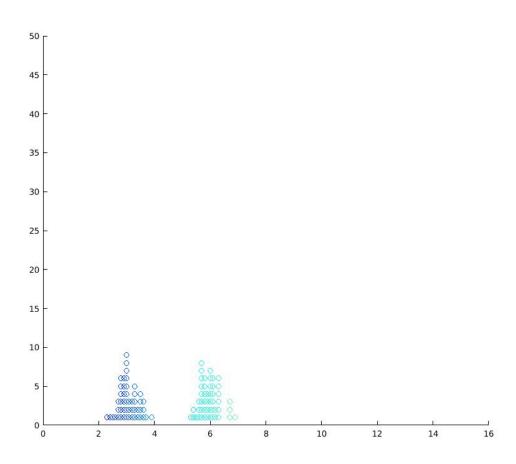
Robot at t=0: bel(x_0)



Prediction at t=1: $\overline{bel}(x_1)$



Prediction at t=2: $\overline{bel}(x_2)$



Correcting Our Prediction

- To mitigate the noisiness of our motion model, we use sensor readings z_t to correct our belief distribution.
- Our sensors give us a probability distribution p(x₊|z₊).
- Can't our sensors just tell us where we are?

NO!

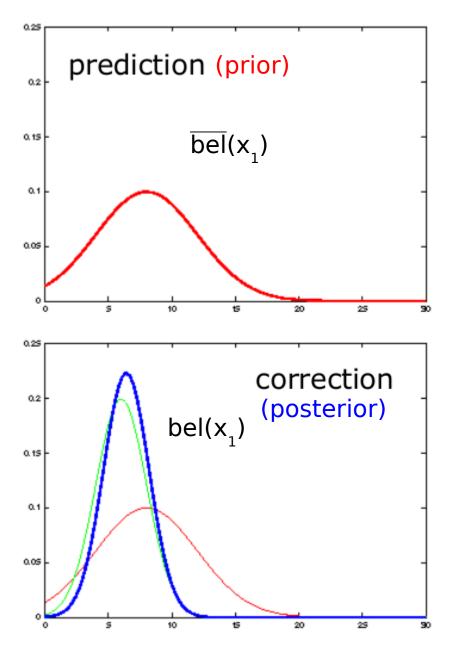
- They're noisy.
- An individual reading may not be that informative because the world can be ambiguous (e.g., doors look alike).
- Need to combine information.

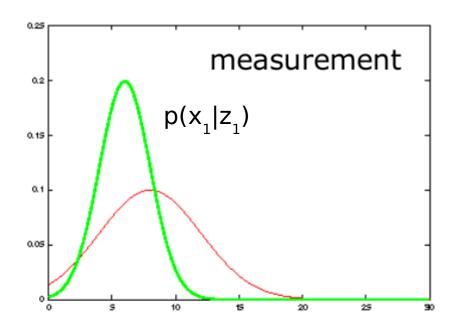
Sensor Model

- We should try to model uncertainty in our sensor data.
- Lots of work on sonar and laser rangefinder noise models (e.g., effects of reflections, viewing angle, etc.)
- For visual landmarks:
 - Effects of camera resolution.
 - Distance estimates might have variance proportional to the distance value (larger distances have higher variance).
 - Bearing estimates might have variance inversely proportional to distance.

Interlude: The Kalman Filter

If distributions are gaussians, we can combine them using a **Kalman filter**. Weighting is inversely proportional to variance.

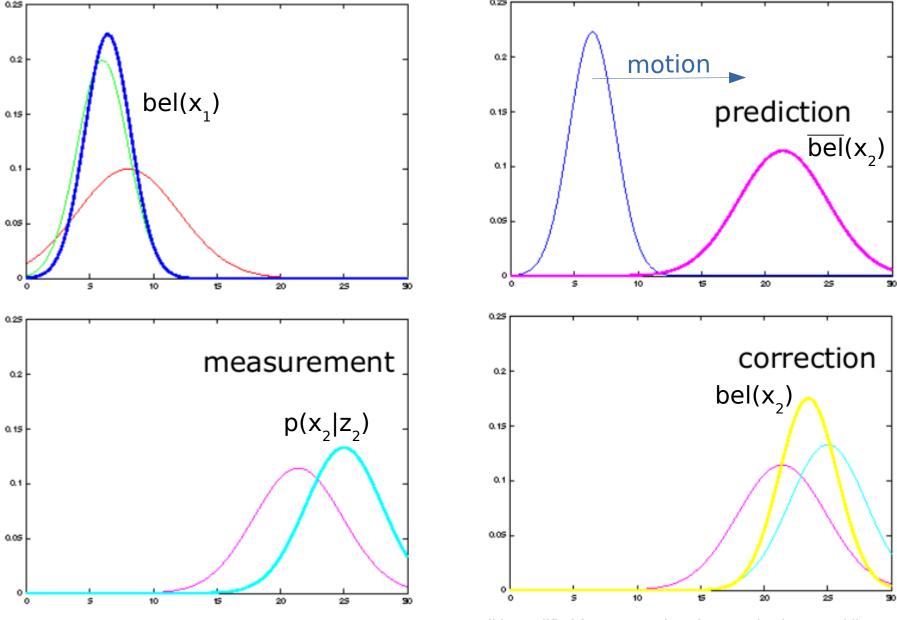




It's a weighted mean!

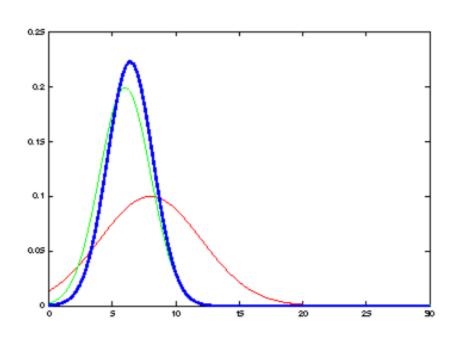
Slide modified from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 9: "Bayes Filter – Kalman Filter".

Second iteration: prior belief \rightarrow prediction \rightarrow measurement \rightarrow correction.



Slide modified from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 9: "Bayes Filter - Kalman Filter".

Product of Two Gaussians



$$\mu_3 = \frac{\mu_1 \sigma_2 + \mu_2 \sigma_1}{\sigma_1 + \sigma_2}$$

$$\sigma_3 = \frac{\sigma_1 \cdot \sigma_2}{\sigma_1 + \sigma_2}$$

Bayesian Filter, part 2

From part 1:

$$\overline{bel}(x_t) = \int_{x_{t-1}} p(x_t | x_{t-1}, u_t) \cdot bel(x_{t-1}) dx_{t-1}$$

Sensor reading z_t gives distribution $p(x_t|z_t)$.

Corrected:
$$bel(x_t) = \eta p(z_t | x_t) \cdot \overline{bel}(x_t)$$

 η is a normalization constant.

But How Do We Correct Our Beliefs If We're Using Particles to Represent the Distribution?

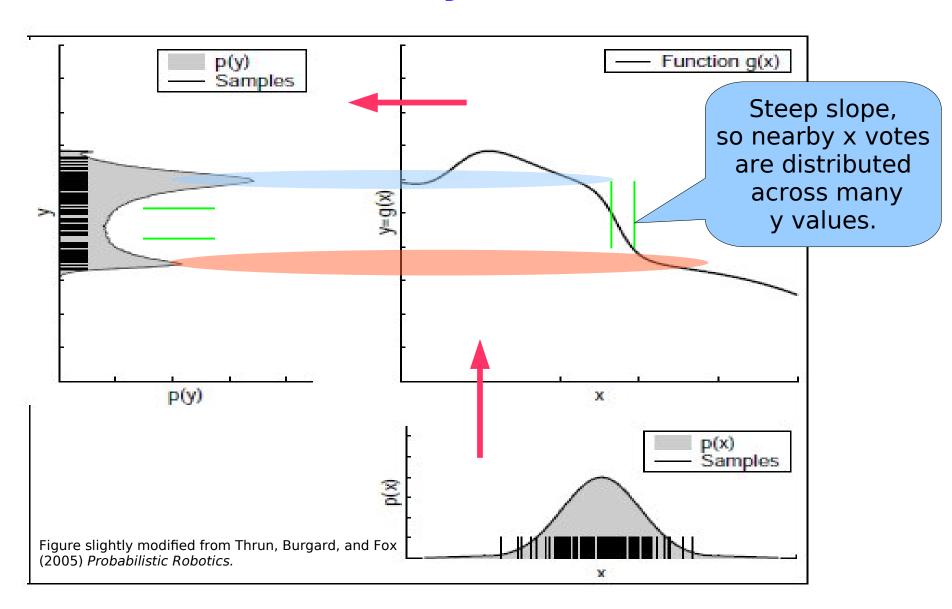
Corrected Sampling Representation

- Prior distribution $\overline{bel}(x_t)$ is "corrected" by weight $p(z_t|x_t)$ to give posterior $bel(x_t)$.
- The weighted particles are a sampling representation of the new distribution p(x₁).
- The robot can move around and we can move the particles and update their weights.
- But is this a good representation?
- Particles whose weights become low aren't representing useful hypotheses. Eventually the representation falls apart because we're sampling the wrong regions.

Resampling

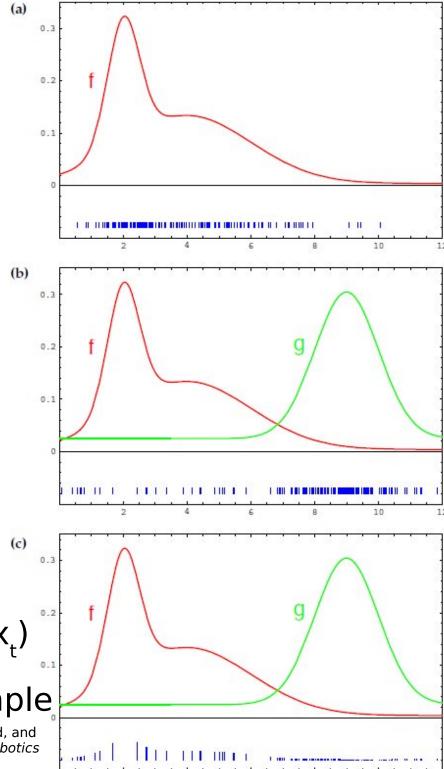
- Things break down when too many particles are representing the wrong regions of bel(x_t), so their weights are low.
- We can fix this by resampling $bel(x_t)$, giving a fresh set of particles distributed correctly.
- But we have no formula for bel(x_t), and no direct representation of it.
- So how do we sample from it?
 - Importance sampling.

Sampling a Function y=g(x) From an Arbitrary Distribution x



Importance Sampling

- Want to sample from f.
- Can only sample from g.
- Weight each sample by f(x) / g(x).
- The weighted samples approximate f.
- g is $\overline{\text{bel}}(x_t)$
- Weighting comes from p(z_t|x_t)
- Drawing from weighted sample gives $f = bel(x_t)$ Figure from Thrun, Burgard, and Fox (2005) Probabilistic Robotics



10

Resampling: Drawing From Weighted Samples

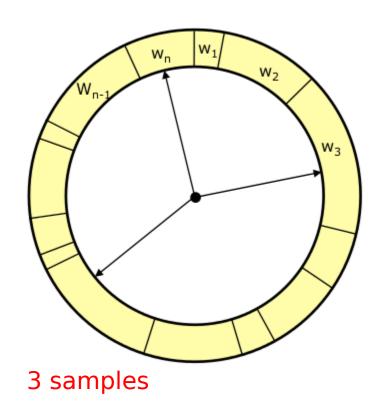
- We don't need to resample on every time step t. We can accumulate sensor data for several time steps, so our weights are more accurate.
- We can also use the weights to estimate the robot's location (if the distribution is unimodal):

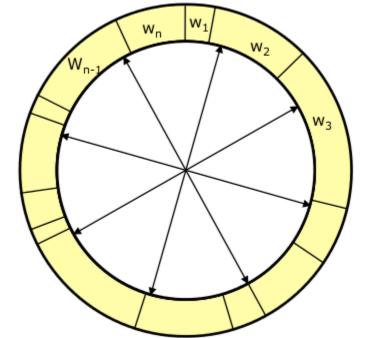
$$\hat{x}(t) = \sum_{i} w_t^{(i)} \cdot x_t^{(i)}$$

- When to resample?
 - If the variance on the weights is high, then many particles are representing non-useful portions of the space.
 - Resampling redistributes the particles so they are concentrated where the probability density is highest.

How To Resample

 Stochastic universal sampling is a trick for drawing samples from a weighted distribution as fairly as possible (low variance sampling).





8 samples (equal spacing instead of independent sampling lowers the variance)

Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Weighting in a Corridor

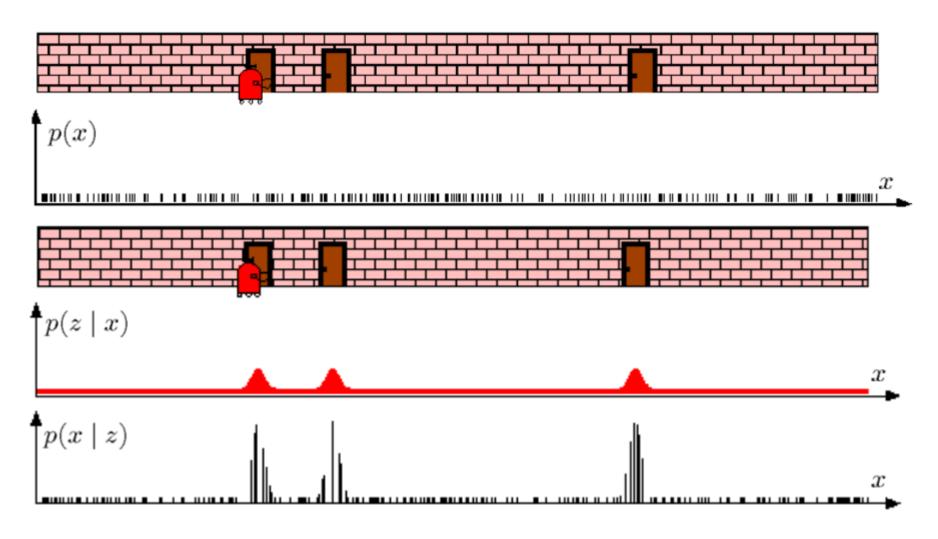
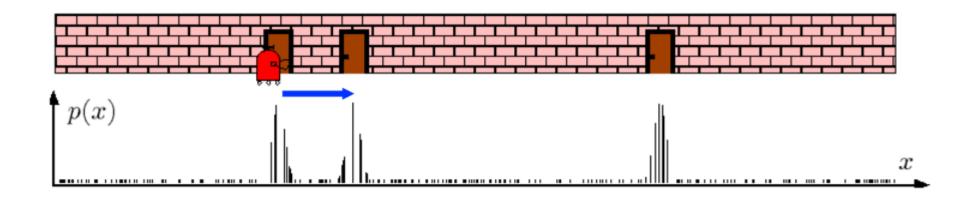
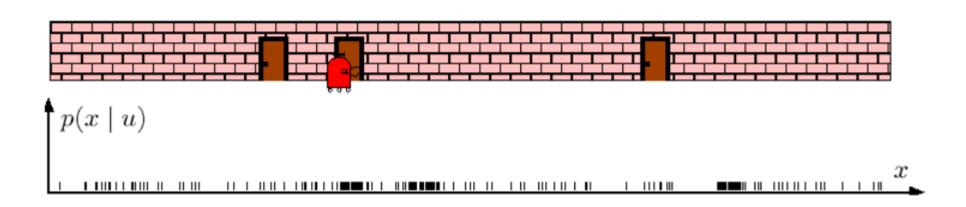


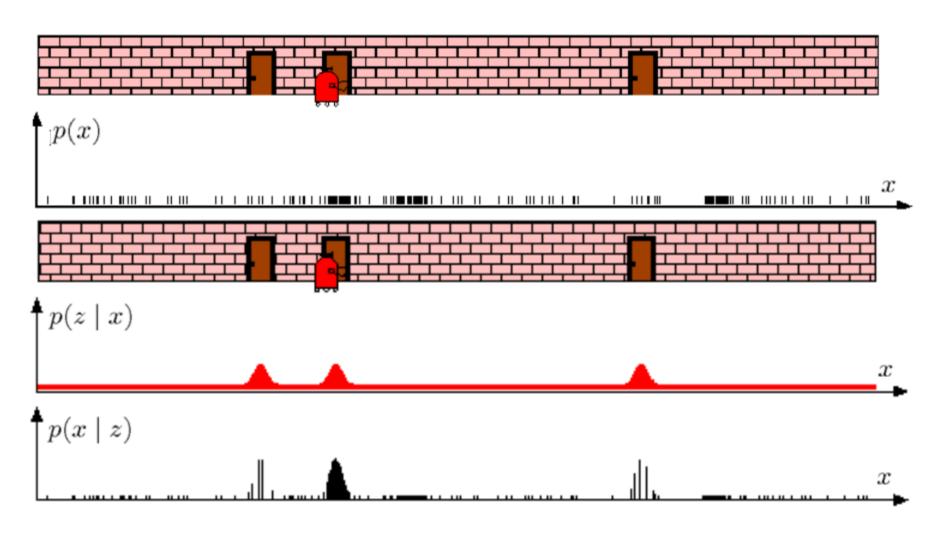
Image from Burgard et al., "Introduction to Mobile Robotics", 2014, lecture 12: "Bayes Filter – Particle Filter and Monte Carlo Localization".

Moving and Then Resampling

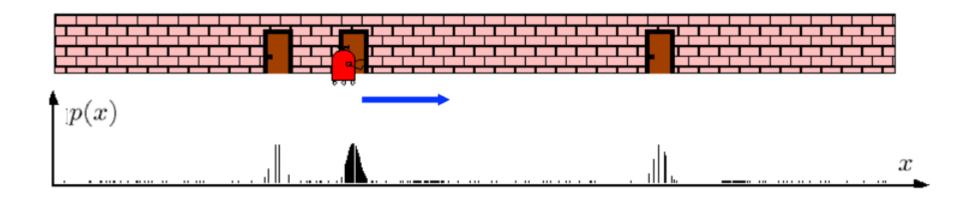


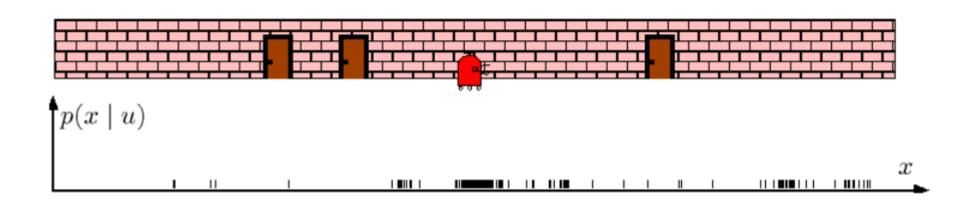


Sensing and Weighting



Moving and Then Resampling





Summary

- Particle filters are the preferred method for robot localization in the real world.
- Robot pose typically encoded as (x,y,θ).
- A map is needed to define how sensor values indicate locations. But what if we don't have a map?
- Particles can be used to represent hypotheses about the map as well as about the robot's location.
 - SLAM: Simultaneous Localization and Mapping.
 - We'll explore this in a later lecture.