
15-494/694: Cognitive Robotics

Lecture 11:

Speech Generation and
Recognition

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Speech Generation

● We use the Google Cloud Text to Speech
API to generate speech for VEX AIM.

● Parameters are defined in actuators.py
 tts_voice = texttospeech.VoiceSelectionParams(
 language_code="en-US",
 name="en-US-Journey-F",
 ssml_gender=texttospeech.SsmlVoiceGender.FEMALE
)

● Requires Google Cloud credentials. If not
available, revert to gTTS package which
uses Google Translate’s speech facility.

3

Google Cloud Text to Speech

● Info at https://cloud.google.com/text-to-speech
● Multiple voice models

– Basic
– Studio
– WaveNet
– Neural2
– Journey (now “Chirp HD”)
– etc.

● Some models allow control of speech rate and
pitch.

https://cloud.google.com/text-to-speech

4

SSML

● Speech Synthesis Markup Language
● Can be used to control pronunciation of

things like acronyms or numbers
● Can be used to insert pauses where

needed
● Not currently used in vex-aim-tools but

might be in the future.

5

“Say” Node
● Constant case:

Say('hello there') =C=> next

● Variety (will choose at random):
Say([‘hello’, ‘hi’, ‘howdy’]) =C=> next

● Event-driven case:

Compute() =SayData=> Say() =C=> next

● Subclassing “Say”:

class SpeakBattery(Say)

6

SpeakBattery

class SpeakBattery(Say):

 def start(self,event=None):
 cap = self.robot.battery_capacity

 self.text = f'battery capacity {cap} %'

 super().start(event)

7

Speech Recognition
● VEX AIM has no microphone
● Use the laptop's mic or a USB mic
● Recognition via the Google Speech API

– Must have network access to function.
– Biased towards conversational English,

not arbitrary robot commands
– Accuracy in 2025 is quite good.

● Sometimes uses special characters we
don’t want, e.g., “15 degrees” is
transcribed as “15o”.

8

Demo: Google Speech API

https://www.cs.cmu.edu/~dst/SpeechDemo

https://www.cs.cmu.edu/~dst/SpeechDemo

9

Hearing Our Own Speech

● To avoid the robot hearing its own
speech, the Say node temporarily
disables speech recognition before
speaking.

● It re-enables recognition when the speech
is complete.

● This process is imperfect. Mistakes will be
made.

10

Declining Speech Recognition

Speech recognition is turned on by default.

To turn it off: use speech=False in
StateMachineProgram.

class VEXCommand(StateMachineProgram):
 def __init__(self):
 super().__init__(speech=False)

11

When To Listen

● Microphone is always on
● We could use a wake word to indicate

we're addressing the robot.
– “Celeste, please grab a barrel”

● You've seen this trick before:
– “Alexa, ...”
– “Hey Siri, ...”
– “OK Google, ...”

12

The =Hear()=> Transition

dispatch: Say('What now?')

dispatch =Hear('celeste turn left')=>
 Turn(90) =C=> dispatch

dispatch =Hear('celeste drive forward')=>
 Forward(50) =C=> dispatch

13

String Matching

● Convert everything to lowercase
● Remove all punctuation
● Normalize homophones

14

Homophones

● “Thesaurus” data structure defined in
aim_fsm/speech.py

● Words:
– cozmo ← cosmo, cosmos, cosimo, …
– right ← write, wright
– cube1 ← q1, coupon, cuban

● Phrases:
– cube1 ← cube 1
– paperclip ← paper clip

15

Regular Expression Matching

● Uses the Python re package
● Example: optional words

'celeste ?(please|) drive forward'
● Be careful about spaces!

– Example: scanning for keywords:

 'celeste .* grab.*'

 spaces on both sides of .* will be a problem
 if the .* matches the null string

16

Checking the Match Results

● When a =Hear=> transition fires, it offers
a SpeechEvent to the target node(s).

● The SpeechEvent contains three items:
– string: the string that was matched
– words: list of words in the string
– result: the match result from re.match

● contains the groups defined by ()

17

Extracting Groups (1)

from aim_fsm import *

class Speech1(StateMachineProgram):

 class Heard(Say):
 def start(self,event):
 obj = event.result.groups()[1]
 self.text = 'I will grab %s' % obj
 super().start(event)

18

Extracting Groups (2)

 $setup{

 loop: Say('what now')

 loop =Hear('celeste ?(please|) grab a
 (barrel|ball)')=>
 self.Heard() =C=> loop

 loop =Hear=> Say('Pardon me?')
 =C=> loop

 }

19

Dialoging with GPT-4o

● Instead of parsing user utterances with
regular expressions in HEAR transitions,
we can let GPT-4o do that work.

– Much better strategy!

● Now the problem is how to get GPT-4o’s
understanding back into our program
logic.

– Use #hashtag tokens for actions
– How else might they be used?

20

Dialog

● Dialog requires access to a knowledge
base and a mechanism for retrieval.

● What’s in the knowledge base?
– The world map
– The robot’s recent actions and plans
– Recent object references

● Necessary to resolve “it”, e.g.:
– “Do you see an orange barrel?”
– “Pick it up.”

21

What Else Is Needed?

● Celeste has no sense of time. We can’t
refer to “the object you saw 5 minutes
ago”.

– Add timestamps to the prompts?

● Our current Query-Response structure is
too inflexible.

– The robot must wait for our next input.
– What if we want the robot to initiate

action on its own?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

