
15-494/694: Cognitive Robotics

Lecture 7:

The World Map

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

2

Outline

● Why have a world map?
● What's in the vex-aim-tools world map?
● The data association problem
● The kidnapped robot problem
● Obstacle detection

3

Why Have A World Map?

● Represent objects available to the robot.

● Landmarks to be used for localization.

● Obstacle avoidance during path planning.

4

The vex-aim-tools World Map

● Barrels, balls, AprilTags from “aivision”
● Aruco markers from OpenCV
● Coming soon: walls / doorways
● Future: cliffs
● To access the world map:

– robot.worldmap is a WorldMap object
● Objects are in:

– robot.worldmap.objects

5

Object Pose

● A Pose is in (x,y,z,q) coordinates.
– Angles are in radians

● Pose is defined in utils.py.

● The robot and all world map objects have
positions that instances of
utils.PoseEstimate.

– Uses a Kalman filter to estimate position

6

The Data Association Problem

● You see an orange barrel.
– OrangeBarrel.a

● You move to another position.
● You see an orange barrel again.
● Is this the same barrel, or a new one?

– Compare world (not camera) coordinates.
– Requires accurate robot position info.

● Did someone move the first barrel?
● How many orange barrels are there?

7

Current vex-aim-tools Solution

1) For each new image, find all the objects and
calculate their world coordinates.

2) Match new objects to world map objects if
coordinates are “close enough”.

3) Calculate which world map objects should be
visible given robot pose and note any that
weren’t matched. Assume they moved
somewhere; mark as “missing”.

4) If there are seen objects remaining, assign
them to missing world map objects.

5) For any remaining seen objects, create new
world map objects.

8

Future Improvements

● Take occlusion into account when
calculating which objects “should” be
visible from current location.

● Use a smarter algorithm to match new
objects to world map objects, instead of
current greedy algorithm.

– The Hungarian algorithm (Munkres
algorithm) does a better job.

9

Data Association

● Independent (greedy) closest match:

● Closest match without replacement:

● Hungarian algorithm:

10

The Kidnapped Robot Problem

● What do we do when the robot is picked
up and placed in an unknown location?

● If familiar landmarks are present, we can
randomize the particles and relocalize.

● What if we don’t see any landmarks, but
do see new objects?

11

Origin ID (Cozmo)
● The robot's origin_id starts at 1.
● Every time Cozmo is picked up and put

down, he may get a new origin_id value.
● Landmarks can pull him back to an old id.

● Every time the robot sees an object, that
object's origin_id is updated to match the
robot's.

● Object poses are only valid if their
origin_id matches the robot's.

12

show worldmap_viewer

13

Obstacle Avoidance

● Having a world map allows us to do path
planning to avoid obstacles.

● The path planner needs a way to detect
when two objects would collide.

● How can we detect collisions?

14

Collision Detection

● Represent the robot and the obstacles as
convex polygons.

● In 2D, use the Separating Axis Theorem
to check for collisions.

– Easy to code
– Fast to compute

● In 3D, things get more complex.
– The GJK (Gilbert-Johnson-Keerthi)

algorithm is used in many physics
engines for video games.

15

Collision Detection: Circles

● Let d = distance between centers

● Let r
1
, r

2
 be the radii

● No collision if d > r
1
+r

2

r
1

r
2d

16

Collision Detection:
Two Convex Polygons

● The Separating Axis Theorem can be used
to detect collisions between two convex
polygons.

● Time is proportional to the number of
vertices.

● To handle non-convex polygons,
decompose them into sets of convex
polygons and check for collisions between
any two components.

17

Separating Axis Theorem

“If two convex polygons
don't overlap, then there
exists a line, parallel to
one of their edges that
separates them.”

Separating
 line

Separating
 axis

18

Separating Axis Theorem

19

Collision Detection:
Circle and Convex Polygon

● Separating axes to check are parallel to
the edges of the polygon or the line
joining the nearest vertex to the center of
the circle.

r

20

Collision Detection Algorithm

We only need to find one separating axis to
be assured of no collision.

def collision_check(poly1,poly2):
 for axis in Edges(poly1) È Edges(poly2):
 base = pependicular_to(axis)
 proj1 = project_verts(poly1, base)
 proj2 = project_verts(poly2, base)
 if not overlap(proj1,proj2):
 return False
 return True

21

How To Build A World Map
● SLAM: Simultaneous Localization and

Mapping algorithm.
● Each particle stores:

– a hypothesis about the robot's location
(x,y,q)

– a hypothesis about the map, e.g., a set of
landmark identities and locations:
{ (i, xi, yi, qi) }.

● Particles score well if:
– Landmark locations match the sensor

values predicted by the robot's location.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

