
Page 1 of 4

CS495 T. C. Mowry
Parallel Computer Architecture and Programming Date: 09/03/02
Fall 2002

ANL Parallel Processing Macro Package Tutorial

Introduction
The Argonne National Laboratory’s (ANL) parallel processing macro package provides a

virtual machine that consists of a shared global memory and a number of processors with their
own local memory. The macros themselves are a set of process control, synchronization, and
communication primitives implemented as C-languagem4 macros.

The use of macros has the advantage of portability. Unfortunately, the use of macros also
makes debugging more difficult, since error messages are given in reference to the C program
generated from the original program. (While these problems have been resolved in the subsequent
“p4” macros from ANL, unfortunately I have not been able to find a verion of “p4” which has
been ported to SGI Origin machines—if you find one, let me know.)

This document describes a subset of the ANL macros as an introduction to their use. A more
complete description of the ANL macro package appears inPortable Programs for Parallel Pro-
cessors by Ewing Lusk et. a, published by Holt, Rinehart, Winston, Inc., New York.

Macro Description
In this document the macros are grouped by function: environment specification, process

control, shared memory allocation, synchronization and timing. Notice that some macros expand
into definitions or declarations of data structures, while other expand into executable code.

Environment Specification Macros
Some of the macros assume the existence of certain data structures. The MAIN_ENV and

the EXTERN_ENV macros contain the necessary definitions and declarations; MAIN_INITENV
performs the required initialization.

MAIN_ENV contains types and structures used internally in the macro package. It should appear
in exactly one file (typically the main file) in the static definitions section before any other
macros usage.

EXTERN_ENV contains definitions and external declarations and should appear in the static
definitions section of each separately compiled module in which MAIN_ENV does not
appear.

MAIN_INITENV is an executable macro that initializes data structures defined by MAIN_ENV.
The code generated by this macro must be executed before that of any other macro, thus typ-
ically appearing very early in the program’s main function.

MAIN_END should be placed at the end of your main routine, just before your program exits. It
cleans up any structures used by the ANL macros. On the SGI machine, it removes any
shared memory which has been allocated. Youmust put this in all your programs to avoid
leaving shared memory allocated when your program exits.

Page 2 of 4

Shared Memory Allocation Macros
It is a good idea to declare a single structure, saygm_t, as global memory, and use a single

call to G_MALLOC to allocate this structure, say in variablegm. Parts of global memory can then
be referenced asgm->someVar.

G_MALLOC (size) behaves like the Unix/C malloc call, except that the pointer returned points to
globally shared memory which is accessible to all pointers. For example,

gm = (struct gm_t*)G_MALLOC(sizeof(struct gm_t));

wheregm_t is a structure declared earlier.

G_FREE(ptr) de-allocates memory allocated by G_MALLOC, and is similar to the Unix/C free
procedure.

Process Control Macros

CREATE (entryProc) causes a process to be created and start executing the procedureentryProc.
No arguments can be passed to the new process, or as parameters toentryProc. The process
is a Unix-style process and, in fact, CREATE uses thefork system call.

Each process will be assigned to a different processor until there are no processors left. Pro-
cesses are Unix processes, and compete for system resources with all other processes on the
system. As one would expect, process creation is typically relatively slow, which sets a
lower limit to useful task granularity.

Note: At the point when a process is created, all of the parent’s static data, including the
pointer to global shared memory, iscopied once into a separate address space for the created
process. The only memory that is shared is the memory explicitly allocated by
G_MALLOC. Globally allocated data is static.

WAIT_FOR_END (nProcs) waits fornProcs processes created by this process to exit.

Synchronization Macros
There are macros provided for locking, barriers, and distributed loops. In each case, there is

a macro for declaration (its name ends in DEC),the declaration macro should appear within a
structure that is allocated with G_MALLOC, so that it will be globally shared and accessible to
all processes. Another macro contains initialization code (its name ends in INIT);the initializa-
tion must occur before any use.

Lock Macros

LOCKDEC (lockName) contains a lock declaration.

LOCKINIT (lockName) initializes the locklockName.

LOCK (lockName) attempts to acquire ownership of the lock namedlockName. If no other pro-
cess currently owns the lock, then the process becomes the owner of the lock and proceeds.
Otherwise, it is delayed until it can acquire the lock.

UNLOCK (lockName) relinquishes ownership of the lock namedlockName. If other processes are
waiting to acquire the lock, one of them will succeed.

Page 3 of 4

When multiple locks need to be acquired, deadlocks can occur. Perhaps the simplest strategy
to avoid deadlocks in this case is to have all processes acquire the locks in the same order.

If the created processes all try to output to standard output at once, there can be trouble - so
use a lock to access standard output, or let only the main process generate output.

Barrier Macros
A barrier is used to hold processes at a particular pointp in a program until a specified num-

ber of processes have reachedp.

BARDEC(barName) declares a barrier with the given name.

BARINIT (barName) is an executable macro that initializes the barrier.

BARRIER (barName, nProcs) stops all processes reaching this barrier untilnProcs processes
have reached it. When that happens,

1. BarrierbarName is reinitialized; it is not necessary to call BARINIT(barName) again.

2. All the processes continue on from the BARRIER statement.

Distributed Loops: Get Subscript
These macros aid in coordinating a distributed or self-scheduled loop. A self-scheduled loop

is executed in parallel; each process dynamically acquires the next iteration to be executed (in this
case, by first obtaining its corresponding index value).

GSDEC(name) declares an instance of a distributed loop.

GSINIT (name) initializes internal variables of the distributed loop.

GETSUB(name, subscript, maxSub, nProcs) setssubscript to the next available subscript. When
all subscripts in the range 0 tomaxSub (inclusive) have been returned, the following will
happen to a process executing GETSUB, in that order:

1. The GETSUB operation is delayed untilnProcs processes have requested an out-of-range
subscript.

2. Loop instancename is reinitialized; it is not necessary to call GSINIT(name) again.

3. A value of -1 is returned forsubscript.

NOTE: a common mistake is to pass in theaddress of an object as one of the arguments to GET-
SUB—instead, you should pass in thename of the object (the address of the object is taken
implicitly as part of macro expansion).

Timing Macros
Execution time of part or whole programs can be measured using the CLOCK macro. It

gives the current elapsed time in some time unit (1 microsecond on the KSR and SGI), no actual
CPU time, which means that it is important in general that no other programs run during time
measurements.

CLOCK (time) sets time to the current timer value, from 0 to 232 - 1, where time is declared as:

unsigned int time ;

Page 4 of 4

Since the timer is a system-level timer, it’s possible for the value to wrap around while your
program is running. This means that you should output both the start and end time, as well
as the actual elapsed time (the difference). Then you can check whether the timer wrapped
around while the program was executing.

Using the ANL Macros on the NCSA SGI Origin 2000
Machines

Debugging
Your programs should be written so that they will run with a variable number of processes/

processors (allow the number to be specified as a command line argument). It is a very good idea
to begin by debugging your program using a single processor somewhere. If that works, then
move to two processors. Only if that works should you try more than two processors. You can run
on a single processor anywhere (even on your own UNIX machine), by using the Makefile in
ASSTDIR/example_uniprocessor .

The SGI debugger (dbx) is capable of debugging parallel codes. Note thatin order to use
dbx or udb, you must compile with the “-g ” rather than the “-O2 ” CCFLAGS option. However,
for your timing runs, you should use “-O” to get the best performance.

When the compiler complains about an error in your*.c file, the line number that it gives
you refers to this*.c file, and not your original*.U file. Hence you must look in your*.c file
first to determine where the problem is in your*.U file. (Oh, the joys of using m4 macros.)

Note that them4 macros can be delicate; a misplaced space or semicolon can lead to seem-
ingly bizarre behavior—keep this in mind when debugging your programs. For example, a space
cannot occur between a macro name and the opening ‘(‘ for its argument list. Thus,
G_FREE(ptr) calls the macroG_FREE with the argumentptr , whileG_FREE (ptr) calls
the macroG_FREE with no argument (note that this will not necessarily lead to an error mes-
sage). See them4 man pages for a quick overview on the use ofm4 macros.

Kill Those Stray Processes!
When your parallel program fails on an SGI machine, the associated processes will not nec-

essarily terminate. Always check to see if any processes are still running by typing “ps -ef |
grep yourLoginName ”. If so, use “kill -9 processID ” to kill the associated pro-
cesses.

Free those shared memory segments!
On an SGI machine, be very careful to release any shared memory segments that your pro-

grams reserve. If your program always executes “MAIN_END” when it exits the program, then
you should be okay. Note: donot exit the program by simply saying “exit(1) ” - this doesnot
free the shared memory segment.

To check whether any shared memory segments are outstanding, use “ipcs ”. To free an
outstanding memory segment, type “ipcrm -m <segment_id> ”, and to free a synchroniza-
tion object, type “ipcrm -s <segment_id> ”.

