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O Christmas B-Tree

1. Lehman and Yao proposed a small modification to the B-tree structure to permit more concurrent
operations to take place. How did their modified B-tree ensure that operations were still correct under
concurrency?

Solution: The solution maintained a linked-list at each level that could be updated atomically. All
seek operations could eventually find the correct value by traversing the linked list even if the rest
of the tree had not been updated.

How did their modified B-tree provide efficient operations despite the modification? How effective was
their change at overcoming the limitations of atomic B-tree transformations?

Solution: Most operations will still use the index to get to the correct item or at least quite near it.
In general, the number of extra operations should be less than or equal to the number of concurrent
inserts (and in practice, should be smaller than that). The change is therefore quite effective.

What are two drawbacks to their proposed B-tree structure?

Solution: a) It is more complex. It requires careful coding to order updates properly.

b) It does not re-balance the tree upon deletion, but requires a periodic global cleanup pass to do
so. As a result, the tree is not guaranteed to remain balanced.

c) It does not guarantee worst-case log(n) tree depth.
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Failure

2. Identify the three major sources of failures that can affect a transactional database, the timescale on
which the system must recover from those failures, and one mechanism that the system can use to do
so (for each failure mode).

Solution: Let’s assume that our system should target a reasonable availability of 99.9%. Such
uptime allows us 365 ∗ 0.001 ∗ 24 = 8.7 hours of downtime per year. With that assumption in mind,
we can calculate the timescale on which the system must recover (keeping in mind that the system
might have to take longer!).

Disk failure: These failures destroy not only the running system (which presumably crashes when
it discovers it has no disks), but the primary copy of the database. Using proper care (e.g., RAID),
these failures can be expected to be fairly rare—perhaps O(yearly) or every few years. As a result,
the system can probably afford to spend multiple hours in such a recovery. The only mechanism
that sufficies for this is backups to redundant storage, though there are many ways to create such
backups.

System failure/crash: These failures lose all data stored in memory on the database system.
They might be expected to occur on the order of every few months, though these numbers will vary
widely. If the OS fails, recovery will be bounded by the amount of time it takes to reboot (call
it 10 minutes); it seems reasonable, then, that database recovery should occur within a reasonable
factor of that, perhaps up to an hour. The primary technique used to recover from system failures
is write-ahead logging.

Transaction failure: These failures must roll back an in-progress transaction. The transaction
may have changed some data values that need to be restored. Such “failures” are common and must
be recovered from nearly instantly. The recovery is handled by standard transactional mechanisms—
either by updating only shadow copies of data until the transaction is done, or by recording the old
values so that the transaction’s effects can be reverted.

Some of what you wrote above probably involves logging in one form or another. Explain briefly one
advantage and one disadvantage of physical logging (writing blocks exactly as they are) and logical
logging (recording the stream of operations that would change the blocks instead of the actual content
of the block).

Solution: Physical logging is relatively straightforward and makes recovery simpler, because the
database can simply revert the physical pages. It is, however, frequently inefficient—a small update
operation that only touched 20 bytes in a page would still result in the entire (4k or larger) page
being written to the log.

Logical logging’s advantages and disadvantages are the opposite—it is efficient, but can be difficult
to reason about what parts of a transaction had been committed to disk (e.g., if the log contains
“add 200 to everybody’s salary,” the DB doesn’t know if some of those updates had been applied
and others not).
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Mercury in the water

3. “Recovery Management in Quicksilver” [Haskin88] describes a distributed database system with a
broader agenda. Specifically, [Haskin88] sets out to offer transactions as a simple-to-use, nearly trans-
parent failure recovery service for all processes in a distributed system. (a) Explain how this might
benefit non-database applications. But non-database applications differ from database applications, so
a variety of specializations are offered. (b, c, d) Describe THREE such specializations and how they are
beneficial.

Solution: (a) Haskin88 offers non-database distributed applications an automated recovery method
for distributed systems which are exposed to partial failures. By basing it on IPC, the recovery tools
can be responsible for identifying what modules are involved in a transaction. All the application
has to do is have a local commit/abort structure.

There were several specific commit specializations mentioned in the paper and in lecture. Any three
of these answers the question:

(b) 1 phase commit services: simple volatile services which get only one message and then end.

(c) Truncated 2nd phases based on vote: commit read-only if nothing to recover and no interest in
second phase.

(c) Transaction graph cycles: first invocation votes for real, the rest give commit read-only.

(d) Transactions continuing after commit: messaging which aren’t stateful or part of the last trans-
action are allowed after the commit starts and cannot cause an abort.

(e) Coordinator migration: rotate the graph such that the most appropriate nodes become coordi-
nator.

(f) Coordinator replication: allows interposed mirrored processing for a replicated coordinator.
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I hear Texas has a part-time parliament, too. . .

4. As demonstrated by Mike Fischer, Nancy Lynch, and Mike Paterson, a distributed system in an asyn-
chronous environment that reaches consensus cannot both be correct and always terminate (see “Impos-
sibility of Distributed Consensus with One Faulty Process,” JACM 1985, which won the 2001 Dijkstra
prize—this is sometimes called the FLP impossibility result). Paxos reaches consensus and is correct.
Sketch out a scenario where it does not terminate, briefly describing what happens in the prepare and
accept phases (phases 1 and 2) to prevent termination.

Solution: Two concurrent proposers fight (see Section 2.4 of “Paxos made simple”). Proposer A
proposes number 1 in prepare, proposer B proposes number 2. Proposer A attempts an accept, but
fails seeing that number 2 has been proposed. Proposer A then proposes number 3. Proposer B
attempts an accept, but fails seeing that number 3 has been proposed. Proposer B then proposes
number 4. This dual may repeat ad infinitum, preventing termination.
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Those wild, wild writes

5. Hive partitions an OS into cells for fault isolation. In particular, Hive attempts to prevent against wild
writes, which can occur when faulty software or hardware attempts to write to the wrong memory page.
Give one example of a wild write that Hive prevents:

Solution: Hive prevents wild writes using the FLASH memory firewall, which uses a 64-bit vector
for each page to track which processors (up to 64 processors or groups of processors) can write to
each page. The local OS requests a firewall status change to the remote OS over RPC when a local
process maps a remote shared memory page into its address space. The remote OS only maps user
pages.

So, e.g., any hardware or software fault that tried to write into remote kernel pages would be
prevented. (Of course, this is just one example. We accepted other correct answers.)

Give one example of a wild write that Hive does not prevent:

Solution: A corrupted page table for a local process that erroneously referenced a remote shared
page may lead to an invalid wild write.
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Istanbul (not Constantinople)

6. Byzantine fault-tolerance in asynchronous environments requires a lot of servers—3f + 1 to tolerate f
faults. Suppose we want to provide a Byzantine fault tolerant database server to handle payroll in each
local office of a large multinational corporation. Rather than deploy 3f + 1 servers in each office, we
could deploy 2f +1 servers in each office and use f servers in a remote office to total 3f +1 total servers.
Using Castro and Liskov’s protocol, how would this affect client latencies when all servers are correct?
(Hint: what would happen if f nodes had crashed rather than just being slow.)

Solution: When all servers are correct, Castro and Liskov’s protocol executes in four message delays
even if f servers have crashed. So you should be able to build a system using this technique without
affecting client latencies.

A common misconception was that a Byzantine fault tolerant replicated state machine could continue
with only f+1 correct and responsive servers in an asynchronous environment—at least 2f+1 servers
are required (though there must be 3f + 1 servers to guarantee liveness).

How would this affect the reliability of the system compared to deploying 3f + 1 servers at each local
office? What do you think the effect on security would be?

Solution: Our initial answer was the following: With 2f+1 servers at each local office, an adversary
can cause problems by compromising any one server at a local office and f servers at a remote office.
With 3f + 1 servers, an adversary would need to compromise f + 1 or more servers at each office.
In a less-adversarial scenario, if a blizzard cuts off the remote office and one local server crashes, the
local office with 2f + 1 servers cannot run its database but the office with 3f + 1 (for f ≥ 1) still
can.

The question was a little bit vague (reliability and security in what context?), so we accepted several
different answers. For example, some noted that keeping payroll remotely may be a privacy issue,
some noted that the remote site could serve as a backup of last resort, and someone even noted that
this technique allows tolerance of more faults for a fixed number of servers between two sites. Full
credit was given to anything that was well argued.
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Finnegans Wake, featuring Muster Mark

7. In the parliamentary election on October 21st, 2007, the transmission from polling station to tabulation
center of votes cast in Geneva for Switzerland’s general election were secured using quantum cryptography
(provided by a Swiss firm, ID Quantique, of course). Assume, for purposes of this question, that the
salient features of quantum crypto are that it is unbreakable and on the bleeding edge of technology.
Argue why this choice was likely or not likely to improve security in the election. (Provide concrete
reasons for your answer, ideally with reference to material we’ve examined in the course, hint hint.)

Solution: I’ll let the blogosphere answer this one – here’s what Bruce Schneier has to say
(http://www.schneier.com/blog/archives/2007/10/switzerland pro.html):

“This is so silly I wasn’t going to even bother blogging about it. But the sheer number of news
stories has made me change my mind.

“Basically, the Swiss company ID Quantique convinced the Swiss government to use quantum cryp-
tography to protect vote transmissions during their October 21 election. It was a great publicity
stunt, and the news articles were filled with hyperbole: how the ‘unbreakable’ encryption will ensure
the integrity of the election, how this will protect the election against hacking, and so on.

“Complete idiocy. There are many serious security threats to voting systems, especially paperless
touch-screen voting systems, but they’re not centered around the transmission of votes from the
voting site to the central tabulating office. The software in the voting machines themselves is a
much bigger threat, one that quantum cryptography doesn’t solve in the least.”

A quick read of Ross Anderson’s paper (“Why Cryptosystems Fail”) describing ATM fraud should
have provided the same impression: “The three main causes of phantom withdrawals did not involve
cryptography at all: they were program bugs, postal interception of cards, and thefts by bank staff.”

A common mistake was to ignore our statement that quantum crypto is unbreakable. We were
looking for some evidence that you absorbed the high-level points of the lectures on security.

Consider two pieces of legislation, the first mandating the use of smart cards for all ATM machines, the
second making banks liable for phantom withdrawals. Argue which law would make more of an impact
on ATM fraud.

Solution: See Ross Anderson’s paper, “Why Cryptosystems Fail.”
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Ticket to ride

8. Consider these two approaches to delegating your access privileges to a server. (1) Give your account
name and password, so that it can authenticate to a third party as you, or (2) give it a capability (e.g.,
your Kerberos ticket) to act as you. Explain why the second approach is superior. Also, propose a
situation in which it would not work.

Solution: Both approaches allow the server to act as you, but the second approach allows you to
limit the time period and rights of what can be done as you. With your password, the server can
become you whenever it wants. With a capability, the server can do only what you specified and
only for as long as the capability is valid.

The second approach will not work for services that do not include support for capatilities delivered
by you. For example, the services you wish to use may not have Kerberos support or may reside in
a realm that does not know about you.
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The way we was

9. The nature of the Internet and UNIX around the time of the Internet worm were both helpful in
dissemination the worm and helpful in defeating the worm. List two characteristics and how each helped
and hurt.

Solution: (a) Wide-scale network communication: the propagation of the Worm depended upon
network communication. Likewise, much propagation of information and fixes relied upon the same
network.

(b) Homogenous systems: many of the attacked systems all had the same security weaknesses,
allowing the Worm’s simple mechanisms to spread widely. Since the set of weaknesses was small,
the set of necessary repairs was also small.

(c) Well-documented holes: the weaknesses exploited by the Worm were all well-known before its
release, which made it relatively easy to construst. Likewise, identifying and repairing the weaknesses
exploited by the Worm was easier because those weaknesses were already known to exist.

In “The Protection of Information in Computer Systems” [Saltzer75], the authors describe the following
attack: “...a masquerader could exactly record the enciphered bits in one communication, and then
intercept a later communication and play them back verbatim.” (This technique is sometimes called
spoofing or a replay attack.)

Although the spoofer may learn nothing by this technique, he might succeed in thoroughly confusing
the user or the computer system. The general countermeasure for spoofing is to include in each enci-
phered message something that is unique, yet predictable, such as .” There are three common
implementation techniques for the blank in this quote. (a) Describe TWO such techniques. (b) Explain
how each counters “spoofing.” (c) Contrast the costs or limitations of each.

Solution: (a1) ”just issued challenge nonce” – a message should contain a value that the receiver
recently created to be used uniquely in this message.

(b1) This counters spoofing in that the receiver constructs the challenge nonces so that it never
reuses the values, so no old message could be replayed and confuse it.

(a2) ”synchronized-clock timestamp” – a message should contain the current clock value at a resolu-
tion small enough to never be used twice, provided that the receiver can be comfortable determining
that the stamp is the current time.

(b2) If the receiver’s current time is exactly the message timestamp, and clock values don’t repeat,
then a timestamped message cannot be replayed. Since perfect synchronization is unlikely, given
message skew and clock drift, a receiver has to accept stamps within a window around its clock’s
value, and maintain a copy of all other messages it has accepted in this window so it can detect
replays in the duration of the window.

(a3) ”session-specific sequence number” – inside a session with a sequence number, a challenge nonce
can be computed by following a rule such as ”the last challenge’s value + 1”, so that only the first
sequence number in a series needs to be negotiated.

(b3) Provided sequence numbers never wrap in a session, each message will have a new, unique, yet
predictable value for the sequence number, and no old message can be replayed successfully.

(c) Challenge nonces have only a small amount of state and none per message, or per session. But
they often require an extra roundtrip message for the receiver to give the sender the challenge nonce.
Sequence numbers derive the next challenge nonce from a prior challenge nonce using a pre-agreed
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algorithm, but must track state for each session using this algorithm, where there is at least one
session per machine pair, and often one session per logical service pair. Timestamps also avoid the
extra roundtrip to issue a challenge nonce, but instead have to remember every message within the
clock skew + message skew window around the current timestamp, and compare incoming messages
to each. This increase in state may be more or less than the state needed for sequence numbers,
depending on the skew sizes and the number of sessions likely to be active.
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Trust

10. Attestation is one of the principal tools provided by proposed trusted computing platforms.

What is attestation?

Solution: Attestation is creating an unforgeable statement by a trusted party that the computer
is running a particular piece of code.

What properties does attestation seek to provide / what guarantees does it make? Answer in the context
of a distributed system such as a game.

Solution: It seeks to allow the programs to trust that the others are behaving properly. It achieves
a proxy of this by asserting that they are running certain code which is assumed to be trusted.

What is the design alternative to attestation, and why do these platforms favor attestation over it?

Solution: The major design alternative is a secure-boot-like solution that restricts the code that
is allowed to run on the platform. This solution is used, e.g., in many game consoles so that only
“licensed” developers can write games (these developers typically pay heavily for the privilege).
Attestation raises fewer concerns of vendor lock-in.

Alternate: Many people answered “use a centralized system” and discussed the pros and cons of
such an approach. Though this wasn’t an intended answer, it seems within the scope of the way we
asked this question, so this answer gets credit.

What is a major challenge in using the attestation primitive to build practical trusted systems used by
a huge number of people? List two mechanisms you might use to deal with this challenge.

Solution: One of the biggest challenges is knowing what code to trust. There are many possible
operating systems, BIOSes, sets of OS patches, and application versions that a user could be running.

• Property attestation, as provded by Nexus OS: Trust a small set of authorities to vouch that
programs provide certain properties (e.g., “this video player will not allow copying”). Then
set up trust models so that any program that provides the right property is allowed.

• Vendor attestation: Trust a small set of vendors to sign a certificate for their code, and then
assign trust by vendor.
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