
Vector Processors

Pratyusa Manadhata, Vyas Sekar

{pratyus,vyass}@cs.cmu.edu

1 Introduction

A Vector processor is a processor that can operate on an entire vector in one
instruction. The operand to the instructions are complete vectors instead
of one element.

Vector processors reduce the fetch and decode bandwidth as the number of
instructions fetched are less. They also exploit data parallelism in large sci-
entific and multimedia applications. Based on how the operands are fetched,
vector processors can be divided into two categories - in memory-memory
architecture operands are directly streamed to the functional units from the
memory and results are written back to memory as the vector operation pro-
ceeds. In vector-register architecture, operands are read into vector registers
from which they are fed to the functional units and results of operations are
written to vector registers.

Many performance optimization schemes are used in vector processors. Mem-
ory banks are used to reduce load/store latency. Strip mining is used to
generate code so that vector operation is possible for vector operands whose
size is less than or greater than the size of vector registers. Vector chaining
- the equivalent of forwarding in vector processors - is used in case of data
dependency among vector instructions. Special scatter and gather instruc-
tions are provided ed to efficiently operate on sparse matrices.

Instruction set has been designed with the property that all vector arith-
metic instructions only allow element N of one vector register to take part
in operations with element N from other vector registers. This dramati-
cally simplifies the construction of a highly parallel vector unit, which can
be structured as multiple parallel lanes. As with a traffic highway, we can
increase the peak throughput of a vector unit by adding more lanes. Adding

1



multiple lanes is a popular technique to improve vector performance as it
requires little increase in control complexity and does not require changes
to existing machine code.

2 Why are they expensive

The reason behind the declining popularity of vector processors are their
cost as compared to multiprocessors and superscalar processors. The reasons
behind high cost of vector processors are

• Vector processors do not use commodity parts. Since they sell very
few copies, design cost dominates overall cost.

• Vector processors need high speed on-chip memory which are expen-
sive.

• It is difficult to package the processors with such high speed. In the
past, vector manufactures have employed expensive designs for this.

• There have been few architectural innovations compared to superscalar
processors to improve performance keeping the cost low.

3 Semantic advantage

Vector processing has the following semantic advantages.

• Programs size is small as it requires less number of instructions. Vec-
tor instructions also hide many branches by executing a loop in one
instruction.

• Vector memory access has no wastage like cache access. Every data
item requested by the processor is actually used.

• Once a vector instruction starts operating, only the functional unit(FU)
and the register buses feeding it need to be powered. Fetch unit, de-
code unit, ROB etc can be powered off. This reduces the power usage.

4 CODE

CODE (Clustered Organization for Decoupled Execution) is a proposed vec-
tor architecture which claims to overcome the following limitations of con-
ventional vector processors.

2



• Complexity of central vector register files(VRF) - In a processor with
N vector functional units(VFU), the register file needs approximately
3N access ports. VRF area, power consumption and latency are pro-
portional to O(N*N), O(log N) and O(N) respectively.

• Difficult to implement precise implementation - In order to implement
in-order commit, a large ROB is needed with at least one vector regis-
ter per VFU. In order to support virtual memory, large TLB is needed
so that TLB has enough entries to translate all virtual addresses gen-
erated by a vector instruction.

• Vector processors need expensive on-chip memory for low latency.

Vector registres are organised in the form of clusters in CODE archi-
tecture. Each cluster consists of 4-8 registers and one VFU (arithmetic,
load/store or floating point). Number of access ports needed by each cluster
is 5 and is independent of number of clusters. Area, power and latency in
each cluster is constant. As we add more clusters, it increases both number
of VFUs and number of registers. So area, power and latency per register
remains constant. The clusters use a separate communication network for
transferring vector registers. This allows separate design decision for the
communication network.

Issue logic selects the appropriate cluster to execute an instruction and gen-
erates inter-cluster transfers of operands. It tracks the mapping of architec-
tural registers to cluster registers using a renaming table. Various possible
schemes for cluster selection are - random, minimizing the number of trans-
fers and load balancing among clusters.

CODE supports precise exception using a history buffer. On issuing an
instruction, unallocated registers are assigned for its destination and any
source registers that needs to be moved from other clusters. The physical
registers with old values are not released until the exception behavior is
known. The history buffer keeps track of changes to renaming table. If the
instruction at the head of buffer doesn’t cause an exception, the registers
with old values are released. In case the instruction caused an exception,
the history buffer is scanned to restore the old mapping in renaming table.
Since the history buffer stores only mapping of registers and not the actual
value, it’s size is small.

In order to reduce the size of TLB, CODE proposes an ISA level change.

3



CODE allows partial completion of an instruction in case of an exception.
If an exception is caused between elements 10 and 15, the result of first 9 el-
ements are committed. When exception is resumed, the instruction restarts
from 10th element. With this semantic, a TLB of size one will work, higher
size of TLB is needed for performance reasons.

Instructions in different clusters can execute in decoupled manner. Need
of synchronization arises when one of the instruction queues is full or inter-
cluster transfer of registers is needed. CODE can hide communication la-
tency by forcing the output interface to look ahead into the instruction queue
and start executing register move instructions. It also simplifies chaining
- output of one instruction is chained to the network and dependent in-
struction’s input is chained to the network. In that case, the dependent
instruction gets the output elements as soon as they arrive. CODE is also
compatible with multi-lane architecture, i.e. each lane can have multiple
clusters.

5 Conclusion

Vector supercomputers are not viable due to cost reason, but vector in-
struction set architecture is still useful. Vector supercomputers are adapt-
ing commodity technology like SMT to improve their price-performance.
Superscalar microprocessor designs have begun to absorb some of the tech-
niques made popular in earlier vector computer systems (Ex - Intel MMX
extension). Vector processors are useful for embedded and multimedia ap-
plications which require low power, small code size and high performance.

References

[1] Roger Espasa, Mateo Valero, James E. Smith, ” Vector Architectures:
Past, Present and Future”, in Supercomputing, 1998.

[2] C. Kozyrakis, D. Patterson, ” Vector vs. Superscalar and VLIW Archi-
tectures for Embedded Multimedia Benchmarks”, in MICRO, 2002.

[3] C. Kozyrakis, D. Patterson, ” Overcoming the Limitations of Conven-
tional Vector Processors”, in ISCA, 2003.

[4] Hennessy/Patterson Appendix G: Vector Processing Appendix G

4


