
Optimizing Compilers 15-745 Spring 2003 January 15, 2003

Assignment #1: Introduction to SUIF

Due: Before class, January 29th

Introduction

In this assignment, you will compile a simple C program using SUIF, and debug and complete a simple peephole
optimization pass.

The main purpose of the assignment is to introduce you to the SUIF compiler, rather than to test your knowledge
of compilation techniques. Your success in the later homeworks and possibly your project depends upon learning to
use SUIF. As you will see, we request that you submit only a small amount of material. In fact, in this assignment,
we will provide you with a pointer to the solution binary (part 2 only). You can try it, and understand how it
behaves in case you follow down the wrong path.

We encourage you to attempt to solve the problems below before looking at the solution. In any case, you should
try our solution binary after you've grappled with the assignment as it will take time for you to become comfortable
with the system.

Part 1

First, write a little C program that sorts its command line arguments (which should be integers) and prints the sorted
list to standard out. It doesn't matter what kind of sort you use; keep it simple. Test this code using the GNU C
compiler (gcc). Next look at the note on using the Machine SUIF compiler and �nd the directions (near the bottom)
for setting up your shell environment. Run setup-suif-localtree and add the setup-suif-env script to your
shell initialization �le, as described, to de�ne the environment variables needed for use of SUIF. Read the Machine
SUIF Overview document to �nd out how to compile and run your program using SUIF. That document assumes
that the reader knows how to run the base SUIF front end to prepare an input �le written in C for processing by
the Machine SUIF back end. But all you need to know is that (on the alphas) the c2sby1 command invokes the
necessary passes to transform a .c �le into a .suif �le, which is a SUIF intermediate �le. E.g.,

c2sby1 hello.c

produces hello.suif. The next step in compilation is to use do_lower, which is discussed in the overview document.
E.g.

do_lower hello.suif hello.lsf

produces another intermediate �le that is the direct input to the �rst MachSUIF pass. Then you apply other
MachSUIF passes until you have an assembly language (.s) �le. (Part of your job in this assignment is to �gure out
which passes to run and in what order.) This you can assemble into an executable, e.g.

gcc -g -o hello hello.s

You will hand in your hello.c and the hello.s �le produced by Machine SUIF. Also, please hand in a text �le
named passes.txt containing the ordered list of passes used to obtain the hello.s from hello.c and a short
explanation of what each pass does and why you ordered them in such way.

1

Optimizing Compilers 15-745 Spring 2003 January 15, 2003

Part 2

We have implemented a peephole optimization pass that removes unnecessary move instructions from a Machine-SUIF
intermediate �le. The code for this pass is in the directory:

/afs/cs.cmu.edu/academic/class/15745-s03/assignments/1/

Copy the whole directory to your own $LOCAL_BASE directory. E.g., run the commands:

mkdir -p ~/localnci/assignments/

cp -a /afs/cs.cmu.edu/academic/class/15745-s03/public/assignments/1 ~/localnci/assignments/

Now you can cd into the new directory and use gmake to compile the pass. (Remember to customize your shell
environment as described above.) The peep pass comes with one test input called input.suifcfg which is already
in the required format. You can use the program do_print to generate an ASCII version of this SUIF binary �le
that looks almost like a valid Digital Alpha assembly language �le:

do_print input.suifcfg input.suif.txt

Once you have compiled peep.cpp and the other stu� in homework 1, you invoke the optimization pass as follows:

do_peep -debug 1 input.suifcfg output.suifcfg

The �le output.suifcfg is the optimized output �le; you can view this �le with do_print. The switch -debug 1

prints out statistics summarizing how many moves were eliminated.
What to do: We have introduced a few bugs into peep.cpp, and we have removed some code from one of the

three useless-move patterns recognized (see peep.cpp for more details). By �xing the bugs and inserting a small bit
of code, you should be able to have peep produce the debugging output found in the �le debug.good. Please note
that the bugs are bugs in the data-�ow analysis or in the use of the SUIF and MachSUIF library functions. The
bugs are not compilation bugs.

What will be turned in for part2: A �xed version of peep.cpp.
Where is the solution binary: The solution binary is located in the Machine SUIF tree used for the class. You

should be able to use it if your environment is set correctly. One piece of advice, as Machine SUIF passes are
organized as a driver executable and a shared library, please make sure you are using the correct version of both �les
(libpeep.so and do_peep) when trying out the solution.

Hand In

To hand in your solution create a tar ball (e.g. tar cvf handin.tar �/ncihome/1/tohandin/*) with all the
required �les and copy it to:

/afs/cs.cmu.edu/academic/class/15745-s03/public/handin/<user_name>/<assignment #>

you can copy as many tar balls as you wish. Only the last version will be graded.
Good luck!

Acknowledgments

Thanks to Mike Smith and Glenn Holloway who originally created this assignment.

2

