
1

Lecture 17
List Scheduling

Carnegie Mellon

Reading: Chapter 10.3 – 10.4

Todd C. Mowry 15745: List Scheduling 1

Review: The Ideal Scheduling Outcome

• What prevents us from achieving this ideal?

Ti

Before

1 cycle

After

Time

N cycles

1 cycle

Carnegie Mellon
15745: List Scheduling Todd C. Mowry2

Review: Scheduling Constraints

• Hardware Resources
– finite set of FUs with instruction type, bandwidth, and latency

constraints
h hi h ls h s st i ts– cache hierarchy also has many constraints

• Data Dependences
– can’t consume a result before it is produced
– ambiguous dependences create many challenges

• Control Dependences
– impractical to schedule for all possible paths
– choosing an “expected” path may be difficult

 t b t i i l if

Carnegie Mellon

• recovery costs can be non-trivial if you are wrong

15745: List Scheduling Todd C. Mowry3

Scheduling Roadmap

…
y = c + d

x = a + b x = a + b

y = c + d

…
y = c + d

x = a + b

Carnegie Mellon
15745: List Scheduling

List Scheduling:
• within a basic block

Trace Scheduling:
• across basic blocks

Software Pipelining:
• across loop iterations

Todd C. Mowry4

2

List Scheduling

• The most common technique for scheduling instructions within a basic
block

W d ’t d t b tWe don’t need to worry about:
– control flow

We do need to worry about:
– data dependences
– hardware resources

E ith t t l fl th bl i till NP h d

…
y = c + d

x = a + b

Carnegie Mellon

• Even without control flow, the problem is still NP-hard

15745: List Scheduling Todd C. Mowry5

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:
– “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J.

Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998. p , p

Inputs: Output:
Data Precedence

Graph (DPG)
Machine

Parameters Scheduled Code

I0

I3

I2
I1
I8

I4
I6

Cycle

0
1
2

I0 I2

I6I4

I1 # of FUs:
2 INT, 1 FP

Latencies:
dd 1 l

Carnegie Mellon
15745: List Scheduling

I3
I10
I7

I8

I9

I6
I11
I5

2
3
4

I3 I8 I5

I9

add = 1 cycle, …
Pipelining:

1 add/cycle, …

Todd C. Mowry6

List Scheduling: The Basic Idea

• Maintain a list of instructions that are ready to execute
– data dependence constraints would be preserved
– machine resources are available

• Moving cycle-by-cycle through the schedule template:
– choose instructions from the list & schedule them
– update the list for the next cycle

I2 I0

Cycle

0
1

Carnegie Mellon
15745: List Scheduling

1
2

Todd C. Mowry7

What Makes Life Interesting: Choice

Easy case:
– all ready instructions can be scheduled this cycle

Interesting case:
– we need to pick a subset of the ready instructions

I5 I1 I7

I5 I1 I2 I7I0 ???

Carnegie Mellon

• List scheduling makes choices based upon priorities
– assigning priorities correctly is a key challenge

15745: List Scheduling Todd C. Mowry8

3

Intuition Behind Priorities

• Intuitively, what should the priority correspond to?
• What factors are used to compute it?

– data dependences?
– machine parameters?

I0 I2

I6I4

I3 I8

I1

I5

of FUs:
2 INT, 1 FP

Latencies:
add = 1 cycle, …

Pipelining:
1 dd/ l

Carnegie Mellon
15745: List Scheduling

I9
1 add/cycle, …

Todd C. Mowry9

Representing Data Dependences:
The Data Precedence Graph (DPG)

• Two different kinds of edges:

I0: x = 1;
I0

DPGCode
true “edges”: E

• Why distinguish them?
– do they affect scheduling differently?

I0: x = 1;
I1: y = x;
I2: x = 2;
I3: z = x;

I2

I3

I1

g
(read-after-write) e = (I0,I1)

e = (I2,I3)

x
x “anti-edges”: E’

(write-after-read) e’ = (I1,I2)

Carnegie Mellon

• What about output dependences?

15745: List Scheduling Todd C. Mowry10

Computing Priorities

• Let’s start with just true dependences (i.e. “edges” in DPG)
• Priority = latency-weighted depth in the DPG

I0 I2

I6I4

I3 I8

I1

I5

Carnegie Mellon
15745: List Scheduling

I3 I8 I5

I9

Todd C. Mowry11

Computing Priorities (Cont.)

• Now let’s also take anti-dependences into account
– i.e. anti-edges in the set E’

I0 I2

I6I4

I1

e’e’

Carnegie Mellon
15745: List Scheduling

I3 I8 I5

I9

Todd C. Mowry12

4

List Scheduling Algorithm
cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {p (y g p y) {

if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)

add all targets of op’s anti-edges that are ready to ready-list;
}

}
cycle = cycle + 1;
for op = (all nodes in inflight-list)

if (op finishes at time cycle) {
f i fli ht li t

Carnegie Mellon

remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands

available;
}

}
}

15745: List Scheduling Todd C. Mowry13

Example

I0: a = 1
Cycle

I0: a 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0 0
1
2
3
4
5

Carnegie Mellon

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

15745: List Scheduling

I9: z = -1
I10: JMP L1

I10
6

Todd C. Mowry14

Example

I0: a = 1
Cycle

I0: a 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0 0
1
2
3
4
5

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---

Carnegie Mellon
15745: List Scheduling

I9: z = -1
I10: JMP L1

I10
6I10

Todd C. Mowry15

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

What if We Break Ties Differently?

I0: a = 1
Cycle

I0: a 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0 0
1
2
3
4
51

2 3 3 2 3

444 5

6

Carnegie Mellon
15745: List Scheduling

I9: z = -1
I10: JMP L1

I10
6

1

Todd C. Mowry16

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

5

What if We Break Ties Differently?

I0: a = 1
Cycle

I0: a 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0 0
1
2
3
4
5

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I10

Carnegie Mellon
15745: List Scheduling

I9: z = -1
I10: JMP L1

I10
6

Todd C. Mowry17

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

Contrasting the Two Schedules

• Breaking ties arbitrarily may not be the best approach

Cycle Cycle
6

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0 0
1
2
3
4
5

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---

0
1
2
3
4
5

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I101

2 3 3 2 3

444 5

6

Carnegie Mellon
15745: List Scheduling

I 0
6I10

Todd C. Mowry18

Backward List Scheduling

Modify the algorithm as follows:
– reverse the direction of all edges in the DPG
– schedule the finish times of each operation

 ll b d F l b l• start times must still be used to ensure FU availability

Impact of scheduling backwards:
– clusters operations near the end (vs. the beginning)
– may be either better or worse than forward scheduling

Carnegie Mellon
15745: List Scheduling Todd C. Mowry19

Backward List Scheduling Example:
Let’s Schedule it Forward First

Cycle
0

INT INT MEMLDIa LSL LDIb LDIc LDId
LD L L 0

1
2
3
4
5
6
7
8
9

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----

Carnegie Mellon

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle
– 1 MEM unit: stores (ST) take 4 cycles

15745: List Scheduling

10
11
12

BR ---- ---- ----
---- ---- ----
BR ---- ----

Todd C. Mowry20

6

Now Let’s Try Scheduling Backward

Cycle
0

INT INT MEMLDIa LSL LDIb LDIc LDId
LD

888 8 8

0
1
2
3
4
5
6
7
8
9

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----

7

52 5 5 5 5

7 7 7 7

Carnegie Mellon
15745: List Scheduling

10
11

BR CMP ---- ----
BR ---- ----

1

Todd C. Mowry21

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle
– 1 MEM unit: stores (ST) take 4 cycles

Contrasting Forward vs. Backward
List Scheduling

Cycle
0
1

INT INT MEM
LDIa ---- ----
ADDI LSL

Cycle
0
1

INT INT MEM
LDIa LSL ----
LDIb LDI

Forward Backward

1
2
3
4
5
6
7
8
9
10

ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----

1
2
3
4
5
6
7
8
9
10

LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----

Carnegie Mellon

• backward scheduling clusters work near the end
• backward is better in this case, but this is not always true

15745: List Scheduling

11BR ---- ----11
12

---- ---- ----
BR ---- ----

Todd C. Mowry22

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:
– schedule each block M times forward & backward
– break any priority ties randomly

For real programs:
– regular list scheduling works very well

For synthetic blocks:
– RBF wins when “available parallelism” (AP) is ~2.5
– for smaller AP, scheduling is too constrained
– for larger AP, any decision tends to work well

Carnegie Mellon

for larger AP, any decision tends to work well

15745: List Scheduling Todd C. Mowry23

List Scheduling Wrap-Up

• The priority function can be arbitrarily sophisticated
– e.g., filling branch delay slots in early RISC processors

• List scheduling is widely used, and it works fairly well

• It is limited, however, by basic block boundaries

Carnegie Mellon
15745: List Scheduling Todd C. Mowry24

7

Scheduling Roadmap

…
y = c + d

x = a + b x = a + b

y = c + d

…
y = c + d

x = a + b

Carnegie Mellon
15745: List Scheduling

List Scheduling:
• within a basic block

Trace Scheduling:
• across basic blocks

Software Pipelining:
• across loop iterations

Todd C. Mowry25

