
1

Lecture 1

Introduction

• What would you get out of this course?

• Structure of a Compiler

• Optimization Example

Carnegie Mellon

Todd C. Mowry 15-745: Introduction 1

What Do Compilers Do?

1. Translate one language into another
– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for computer

languages

2. Improve (i.e. “optimize”) the code
– e.g, make the code run 3 times faster
– driving force behind modern processor design

Carnegie Mellon
Todd C. Mowry15-745: Introduction 2

What Do We Mean By “Optimization”?

• Informal Definition:
– transform a computation to an equivalent but “better” form

• in what way is it equivalent?
i h t i it b tt ?• in what way is it better?

• “Optimize” is a bit of a misnomer
– the result is not actually optimal

Carnegie Mellon
Todd C. Mowry15-745: Introduction 3

How Can the Compiler Improve Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations
arithmetic operations memory acesses– arithmetic operations, memory acesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads

Processor

memory

cache

Carnegie Mellon

• Related issue: minimize object code size
– more important on embedded systems

Todd C. Mowry15-745: Introduction 4

2

Other Optimization Goals Besides Performance

• Minimizing power and energy consumption

• Finding (and minimizing the impact of) software bugs
– security vulnerabilities
– subtle interactions between parallel threads

• Increasing reliability, fault-tolerance

Carnegie Mellon
Todd C. Mowry15-745: Introduction 5

Reasons for Studying Compilers

• Compilers are important
– An essential programming tool

• Improves software productivity by hiding low-level details

– A tool for designing and evaluating computer architectures
• Inspired RISC, VLIW machines
• Machines’ performance measured on compiled code

– Techniques for developing other programming tools
• Examples: error detection tools

Littl l s d t sl ti s b s d t s l th

Carnegie Mellon

– Little languages and program translations can be used to solve other
problems

• Compilers have impact: affect all programs

Todd C. Mowry15-745: Introduction 6

Compiler Study Trains Good Developers

Excellent software engineering case study
• Optimizing compilers are hard to build

– Input: all programs
 – Objectives:

• Methodology for solving complex real-life problem s
– Key to success: Formulate the right approximation!

• Desired solutions are often NP-complete / undecidable
– Where theory meets practice

• Can’t be solved by just pure hacking
– theory aids generality and correctness

• Can’t be solved by just theory

Carnegie Mellon

– experimentation validates and provides feedback to
problem formulation

• Reasoning about programs, reliability & security makes you a better
programmer

There are programmers, and there are tool builders…

Todd C. Mowry15-745: Introduction 7

What Would You Get Out of This Course?

• Basic knowledge of existing compiler optimizations

• Hands-on experience in constructing optimizations within a fully
functional research compilerfunctional research compiler

• Basic principles and theory for the development of new
optimizations

Carnegie Mellon
Todd C. Mowry15-745: Introduction 8

3

II. Structure of a Compiler

Source Code Intermediate Form Object Code

C Alpha

• Optimizations are performed on an “intermediate form”

C++

Java

Verilog

Front
End

Back
End

Optimizer SPARC

x86

IA-64

Carnegie Mellon

• similar to a generic RISC instruction set
• Allows easy portability to multiple source languages, target machines

Todd C. Mowry15-745: Introduction 9

Ingredients in a Compiler Optimization

• Formulate optimization problem
– Identify opportunities of optimization

• applicable across many programs
ff t k t f th (l / i)• affect key parts of the program (loops/recursions)

• amenable to “efficient enough” algorithm
• Representation

– Must abstract essential details relevant to optimization
• Analysis

– Detect when it is and to apply transformation
• Code Transformation

Carnegie Mellon

• Experimental Evaluation (and repeat process)

Todd C. Mowry15-745: Introduction 10

Use of Mathematical Abstraction

abstractiont ti t t t
graphs

Mathematical
ModelPrograms

abstractionstatic statements
dynamic execution

g p
matrices
integer programs

solutionsgenerated code

relations

Carnegie Mellon

• Design of mathematical model & algorithm
– Generality, power, simplicity and efficiency

Todd C. Mowry15-745: Introduction 11

Representation: Instructions

• Three-address code
A := B op C
• LHS: name of variable e.g. x, A[t] (address of A + contents of t)

RHS l• RHS: value

• Typical instructions
A := B op C
A := unaryop B
A := B
GOTO s
IF A relop B GOTO s

Carnegie Mellon

p
CALL f
RETURN

Todd C. Mowry15-745: Introduction 12

4

III. Optimization Example

• Bubblesort program that sorts an array A that is allocated in static
storage:
– an element of A requires four bytes of a byte-addressed machine

elements of A are numbered 1 throu h (is a variable)– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO
FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];

Carnegie Mellon

A[j] : A[j+1];
A[j+1] := temp

END

Todd C. Mowry15-745: Introduction 13

Translated Code
i := n-1

S5: if i<1 goto s1
j := 1

s4: if j>i goto s2
t1 := j-1

t8 :=j-1
t9 := 4*t8
temp := A[t9] ;A[j]
t10 := j+1
t11:= t10-1t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6] ;A[j+1]
if t3<=t7 goto s3

t11:= t10-1
t12 := 4*t11
t13 := A[t12] ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp ;A[j+1]:=temp

Carnegie Mellon

p j p
s3: j := j+1

goto S4
S2: i := i-1

goto s5
s1:

Todd C. Mowry 15-745: Introduction 14

Representation: a Basic Block

• Basic block = a sequence of 3-address statements
– only the first statement can be reached from outside the block

(no branches into middle of block)
ll th st t ts t d s ti l if th fi st is – all the statements are executed consecutively if the first one is

(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations

Carnegie Mellon
Todd C. Mowry15-745: Introduction 15

Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in some execution
– Either first instruction of Bj is target of a goto at end of Bi

– Or, Bj physically follows Bi, which does not end in an unconditional
goto.

• The block led by first statement of the program is the start, or
entry node.

Carnegie Mellon
Todd C. Mowry15-745: Introduction 16

5

Find the Basic Blocks
i := n-1

S5: if i<1 goto s1
j := 1

s4: if j>i goto s2
t1 := j-1

t8 :=j-1
t9 := 4*t8
temp := A[t9] ;A[j]
t10 := j+1
t11:= t10-1t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6] ;A[j+1]
if t3<=t7 goto s3

t11:= t10-1
t12 := 4*t11
t13 := A[t12] ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp ;A[j+1]:=temp

Carnegie Mellon

p j p
s3: j := j+1

goto S4
S2: i := i-1

goto s5
s1:

Todd C. Mowry 15-745: Introduction 17

Basic Blocks from Example

i := n-1B1

in

if i<1 goto out

j := 1

if j>i goto B5

i := i-1
goto B2

t8 :=j-1
...
A[t18]=temp

B2

B3

B4

B5

B7

out

Carnegie Mellon
Todd C. Mowry15-745: Introduction 18

t1 := j-1
...
if t3<=t7 goto B8

p

j := j+1
goto B4

B6

B8

Sources of Optimizations

• Algorithm optimization

• Algebraic optimization• Algebraic optimization
A := B+0 => A := B

• Local optimizations
– within a basic block -- across instructions

• Global optimizations
– within a flow graph -- across basic blocks

• Interprocedural analysis

Carnegie Mellon

Interprocedural analysis
– within a program -- across procedures (flow graphs)

Todd C. Mowry15-745: Introduction 19

Local Optimizations

• Analysis & transformation performed within a basic block
• No control flow information is considered
• Examples of local optimizations:

l l b l • local common subexpression elimination
analysis: same expression evaluated more than once in b.
transformation: replace with single calculation

• local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

Carnegie Mellon

• dead code elimination

Todd C. Mowry15-745: Introduction 20

6

Example
i := n-1

S5: if i<1 goto s1
j := 1

s4: if j>i goto s2
t1 := j-1

t8 :=j-1
t9 := 4*t8
temp := A[t9] ;A[j]
t10 := j+1
t11:= t10-1t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6] ;A[j+1]
if t3<=t7 goto s3

t11:= t10-1
t12 := 4*t11
t13 := A[t12] ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp ;A[j+1]:=temp

Carnegie Mellon

p j p
s3: j := j+1

goto S4
S2: i := i-1

goto s5
s1:

Todd C. Mowry 15-745: Introduction 21

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5

B7: t8 :=j-1
t9 := 4*t8
temp := A[t9] ;temp:=A[j]
t12 := 4*jj g

B6: t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

j
t13 := A[t12] ;A[j+1]
A[t9]:= t13 ;A[j]:=A[j+1]
A[t12]:=temp ;A[j+1]:=temp

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

Carnegie Mellon

out:

Todd C. Mowry 15-745: Introduction 22

(Intraprocedural) Global Optimizations

• Global versions of local optimizations
– global common subexpression elimination
– global constant propagation
– dead code elimination

• Loop optimizations
– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures
C d h i ti li i t i f id ti l d ll l th i

Carnegie Mellon

– Code hoisting: eliminates copies of identical code on parallel paths in
a flow graph to reduce code size.

Todd C. Mowry15-745: Introduction 23

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5

B7: t8 :=j-1
t9 := 4*t8
temp := A[t9] ;temp:=A[j]
t12 := 4*jj g

B6: t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

j
t13 := A[t12] ;A[j+1]
A[t9]:= t13 ;A[j]:=A[j+1]
A[t12]:=temp ;A[j+1]:=temp

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

Carnegie Mellon

out:

Todd C. Mowry 15-745: Introduction 24

7

Example (After Global CSE)
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5

B7: A[t2] := t7
A[t6] := t4

B8: j := j+1
goto B4j g

B6: t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

g
B5: i := i-1

goto B2
out:

Carnegie Mellon

Todd C. Mowry 15-745: Introduction 25

Induction Variable Elimination

• Intuitively
– Loop indices are induction variables

(counting iterations)
Li f ti s f th l i di s ls i d ti i bl s– Linear functions of the loop indices are also induction variables
(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations
– strength reduction: replace multiplication by additions
– elimination of loop index: replace termination by tests on other

Carnegie Mellon

elimination of loop index: replace termination by tests on other
induction variables

Todd C. Mowry15-745: Introduction 26

Example (After IV Elimination)
B1: i := n-1
B2: if i<1 goto out
B3: t2 := 0

t6 := 4

B7: A[t2] := t7
A[t6] := t3

B8: t2 := t2+4
t6 := t6+4

B4: t19 := 4*I
if t6>t19 goto B5

B6: t3 := A[t2]
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

goto B4
B5: i := i-1

goto B2
out:

Carnegie Mellon

Todd C. Mowry 15-745: Introduction 27

Loop Invariant Code Motion

• Analysis
– a computation is done within a loop and
– result of the computation is the same as long as we keep going

d th laround the loop

• Transformation
– move the computation outside the loop

Carnegie Mellon
Todd C. Mowry15-745: Introduction 28

8

Machine Dependent Optimizations

• Register allocation
• Instruction scheduling
• Memory hierarchy optimizations
• etc.

Carnegie Mellon
Todd C. Mowry15-745: Introduction 29

