
Lecture 10

Partial Redundancy Elimination

• Global code motion optimization
• Remove partially redundant expressions
• Loop invariant code motion• Loop invariant code motion
• Can be extended to do Strength Reduction

• No loop analysis needed
• Bidirectional flow problem

Carnegie Mellon

Todd C. Mowry 15-745: Partial Redundancy Elim. 1

References

1. E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redundancies,”
CACM 22 (2), Feb. 1979, pp. 96-103.

2. Knoop, Rüthing, Steffen, “Lazy Code Motion,” PLDI 92.
3. F. Chow, A Portable Machine-Independent Global Optimizer--Design and Measurements.

Stanford CSL memo 83-254.
4. Dhamdhere, Rosen, Zadeck, “How to Analyze Large Programs Efficiently and Informatively,”

PLDI 92.
5. K. Drechsler, M. Stadel, “A Solution to a Problem with Morel and Renvoise’s ‘Global

Optimization by Suppression of Partial Redundancies,’” ACM TOPLAS 10 (4), Oct. 1988, pp.
635-640.

6. D. Dhamdhere, “Practical Adaptation of the Global Optimization Algorithm of Morel and
Renvoise ” ACM TOPLAS 13 (2) April 1991Renvoise, ACM TOPLAS 13 (2), April 1991.

7. D. Dhamdhere, “A Fast Algorithm for Code Movement Optimisation,” SIGPLAN Not. 23 (10),
1988, pp. 172-180.

8. S. Joshi, D. Dhamdhere, “A composite hoisting --- strength reduction transformation for
global program optimisation ” International Journal of Computer Mathematics 11 (1982) pp global program optimisation, International Journal of Computer Mathematics, 11 (1982), pp.
21-41, 111-126.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 2

Redundancy

• A Common Subexpression is a Redundant Computation

t1 = a + b t2 = a + bt1 = a + b t2 = a + b

t3 = a + b

• Occurrence of expression E at P is redundant if E is available there:
– E is evaluated along every path to P, with no operands redefined

isince.
• Redundant expression can be eliminated

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 3

Partial Redundancy

• Partially Redundant Computation

t1 = a + bt1 = a + b

t3 = a + b

• Occurrence of expression E at P is partially redundant if E is partially
available there:

E i l t d l t l t th t P ith d – E is evaluated along at least one path to P, with no operands
redefined since.

• Partially redundant expression can be eliminated if we can insert
computations to make it fully redundant

Carnegie Mellon

computations to make it fully redundant.

Todd C. Mowry15-745: Partial Redundancy Elim. 4

Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

a =a = …

t1 = a + b

• As before, partially redundant computation can be eliminated if we
i t t ti t k it f ll d d tinsert computations to make it fully redundant.

• Remaining copies can be eliminated through copy propagation or more
complex analysis of partially redundant assignments.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 5

Partial Redundancy Elimination

• The Method:
1. Insert Computations to make partially redundant expression(s) fully

d d tredundant.
2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.
– In practice, with some restrictions, can do many expressions in

parallelparallel.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 6

Which Occurrences Might Be Eliminated?

• In CSE,
– E is available at P if it is previously evaluated along every path to P,

ith s bs t d fi iti s f dswith no subsequent redefinitions of operands.
– If so, we can eliminate computation at P.

• In PRE,
– E is partially available at P if it is previously evaluated along at

least one path to P, with no subsequent redefinitions of operands.
– If so, we might be able to eliminate computation at P, if we can

 k f ll d dinsert computations to make it fully redundant.
• Occurrences of E where E is partially available are candidates for

elimination.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 7

Finding Partially Available Expressions

• Forward flow problem
– Lattice = { 0, 1 }, meet is union (), Top = 0 (not PAVAIL), entry = 0

• PAVOUT[i] = (PAVIN[i] – KILL[i])  AVLOC[i]

• PAVIN[i] = 0 i = entry

 PAVOUT[p] otherwise

• For a block,
• Expression is locally available (AVLOC) if downwards exposed.

E i i kill d (KILL) if i d

  PAVOUT[p] otherwise
p  preds(i)

• Expression is killed (KILL) if any assignments to operands.

… = a + b a = …
a = …… = a + b

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 8

Partial Availability Example

• For expression a+b.

a = … KILL = 1 PAVIN = a … KILL = 1
AVLOC = 0

PAVIN =
PAVOUT =

t1 = a + b KILL = 0
AVLOC = 1

PAVIN =
PAVOUT =

a = …
t2 = a + b

KILL = 1
AVLOC = 1

PAVIN =
PAVOUT =

• Occurrence in loop is partially redundant.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 9

Where Can We Insert Computations?

• Safety: never introduce a new expression along any path.

t1 = a + b

t3 = a + b

– Insertion could introduce exception, change program behavior.
– If we can add a new basic block, can insert safely in most cases.
– Solution: insert expression only where it is anticipated.

• Performance: never increase the # of computations on any path.
– Under simple model, guarantees program won’t get worse.
– Reality: might increase register lifetimes add copies lose

Carnegie Mellon

Reality: might increase register lifetimes, add copies, lose.

Todd C. Mowry15-745: Partial Redundancy Elim. 10

Finding Anticipated Expressions

• Backward flow problem
– Lattice = { 0, 1 }, meet is intersect (), top = 1 (ANT), exit = 0

• ANTIN[i] = ANTLOC[i]  (ANTOUT[i] - KILL[i])

• ANTOUT[i] = 0 i = exit

 ANTIN[s] otherwise

• For a block,
• Expression locally anticipated (ANTLOC) if upwards exposed.

  ANTIN[s] otherwise
s  succ(i)

… = a + b
a = …

a = …
… = a + b

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 11

Anticipation Example

• For expression a+b.

a = … KILL = 1 ANTIN = a … KILL = 1
ANTLOC = 0

ANTIN =
ANTOUT =

t1 = a + b KILL = 0
ANTLOC = 1

ANTIN =
ANTOUT =

a = …
t2 = a + b

KILL = 1
ANTLOC = 0

ANTIN =
ANTOUT =

• Expression is anticipated at end of first block.
• Computation may be safely inserted there.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 12

Where Do We Want to Insert Computations?

• Morel-Renvoise and variants: “Placement Possible”
– Dataflow analysis shows where to insert:

PP N “Pl bl f bl k b f ”• PPIN = “Placement possible at entry of block or before.”
• PPOUT = “Placement possible at exit of block or before.”

– Insert at earliest place where PP = 1.
Onl pl c t nd f bl cks– Only place at end of blocks,

• PPIN really means “Placement possible or not necessary in each
predecessor block.”

– Don’t need to insert where expression is already available.Don t need to insert where expression is already available.

• INSERT[i] = PPOUT[i]  (PPIN[i]  KILL[i])  AVOUT[i]

– Remove (upwards-exposed) computations where PPIN=1.

• DELETE[i] = PPIN[i]  ANTLOC[i]

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 13

Where Do We Want to Insert? Example

a = … PPIN = a … PPIN =
PPOUT =

t1 = a + b PPIN =
PPOUT =

a = …
t2 = a + b

PPIN =
PPOUT =

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 14

Formulating the Problem

• PPOUT: we want to place at output of this block only if
– we want to place at entry of all successors

• PPIN: we want to place at input of this block only if (all of):
– we have a local computation to place, or a placement at the end of

this block which we can move upp
– we want to move computation to output of all predecessors where

expression is not already available (don’t insert at input)
– we can gain something by placing it here (PAVIN)

• Forward or Backward? BOTH!

• Problem is bidirectional, but lattice {0, 1} is finite, so
– as long as transfer functions are monotone, it converges.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 15

Computing “Placement Possible”

• PPOUT: we want to place at output of this block only if
– we want to place at entry of all successors

 0
• PPOUT[i] =

PPIN t t l t t t f thi bl k l if (ll f)

 0 i = exit

 PPIN[s] otherwise
s  succ(i)

• PPIN: we want to place at start of this block only if (all of):
– we have a local computation to place, or a placement at the end of

this block which we can move up
we want to move computation to output of all predecessors where – we want to move computation to output of all predecessors where
expression is not already available (don’t insert at input)

– we gain something by moving it up (PAVIN heuristic)

 0 i = exit
• PPIN[i] =  ([ANTLOC[i]  (PPOUT[i] – KILL[i])]

 P(PPOUT[p] AVOUT[p]) otherwise
 PAVIN[i])

p  preds(i)


Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 16

 PAVIN[i])

“Placement Possible” Example 1

a = … KILL = 1 PAVIN = 0 PPIN = a …
AVLOC = 0
ANTLOC = 0

KILL 0

PAVOUT = 0
AVOUT = 0

PAVIN 1

PPOUT =

PPIN t1 = a + b KILL = 0
AVLOC = 1
ANTLOC = 1

PAVIN = 1
PAVOUT = 1
AVOUT = 0

PPIN =

PPOUT =

a = …
t2 = a + b

KILL = 1
AVLOC = 1
ANTLOC 0

PAVIN = 1
PAVOUT = 1
AVOUT 1

PPIN =

PPOUT ANTLOC = 0 AVOUT = 1 PPOUT =

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim.

17

“Placement Possible” Example 2

a = … KILL = 1 PAVIN = 0 PPIN =

t1 = a + b AVLOC = 1
ANTLOC = 0

KILL 1

PAVOUT = 1
AVOUT = 1

PAVIN 0

PPOUT =

PPIN a = … KILL = 1
AVLOC = 0
ANTLOC = 0

PAVIN = 0
PAVOUT = 0
AVOUT = 0

PPIN =

PPOUT =

t2 = a + b KILL = 0
AVLOC = 1
ANTLOC 1

PAVIN = 1
PAVOUT = 1
AVOUT 1

PPIN =

PPOUT ANTLOC = 1 AVOUT = 1 PPOUT =

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim.

18

“Placement Possible” Correctness

• Convergence of analysis: transfer functions are monotone.
• Safety: Insert only if anticipated.

PPIN[i]  (PPOUT[i] – KILL[i])  ANTLOC[i]

 0 i = exit
PPOUT[i] =

INSERT PPOUT ANTOUT i ti i f

 0 i exit

 PPIN[s] otherwise
s  succ(i)

• INSERT  PPOUT  ANTOUT, so insertion is safe.

• Performance: never increase the # of computations on any path

• DELETE = PPIN  ANTLOC• DELETE = PPIN  ANTLOC
• On every path from an INSERT, there is a DELETE.
• The number of computations on a path does not increase.

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 19

Morel-Renvoise Limitations

• Movement usefulness tied to PAVIN heuristic
– Makes some useless moves, might increase register lifetimes:

a+b

a+b

– Doesn’t find some eliminations:

a b

• Bidirectional data flow difficult to compute.

a+b

Carnegie Mellon
Todd C. Mowry15-745: Partial Redundancy Elim. 20

Related Work

• Don’t need heuristic
– Dhamdhere, Drechsler-Stadel, Knoop,et.al.
– use restricted flow graph or allow edge placements.

• Data flow can be separated into unidirectional passes
– Dhamdhere, Knoop, et. al.Dhamdhere, Knoop, et. al.

• Improvement still tied to accuracy of computational model
– Assumes performance depends only on the number of computations

along any pathalong any path.
– Ignores resource constraint issues: register allocation, etc.
– Knoop, et.al. give “earliest” and “latest” placement algorithms which

begin to address thisbegin to address this.
• Further issues:

– more than one expression at once, strength reduction, redundant
assignments redundant stores

Carnegie Mellon

assignments, redundant stores.

Todd C. Mowry15-745: Partial Redundancy Elim. 21

