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Lecture 10

Partial Redundancy EliminationPartial Redundancy Elimination

• Global code motion optimization
• Remove partially redundant expressions
• Loop invariant code motion
• Can be extended to do Strength Reduction

N  l p n l sis n d d

Carnegie Mellon

• No loop analysis needed
• Bidirectional flow problem
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Redundancy

• A Common Subexpression is a Redundant Computation

t1 = a + b t2 = a + b 

• Occurrence of expression E at P is redundant if E is available there:

t3 = a + b  

Carnegie Mellon

– E is evaluated along every path to P, with no operands redefined 
since.

• Redundant expression can be eliminated
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Partial Redundancy

• Partially Redundant Computation

t1 = a + b 

• Occurrence of expression E at P is partially redundant if E is partially 
il bl th

t3 = a + b  

Carnegie Mellon

available there:
– E is evaluated along at least one path to P, with no operands 

redefined since.
• Partially redundant expression can be eliminated if we can insert 

computations to make it fully redundant.

Todd C. Mowry15-745: Partial Redundancy Elim. 4



2

Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

a = …      

t1 = a + b 

Carnegie Mellon

• As before, partially redundant computation can be eliminated if we 
insert computations to make it fully redundant.

• Remaining copies can be eliminated through copy propagation or more 
complex analysis of partially redundant assignments.
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Partial Redundancy Elimination

• The Method:
1. Insert Computations to make partially redundant expression(s) fully 

redundant.
2 Eli i t  d d t ssi (s)2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.
In practice  with some restrictions  can do many expressions in 

Carnegie Mellon

– In practice, with some restrictions, can do many expressions in 
parallel.
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Which Occurrences Might Be Eliminated?

• In CSE,
– E is available at P if it is previously evaluated along every path to P, 

with no subsequent redefinitions of operands.
If s    li i t  t ti  t P– If so, we can eliminate computation at P.

• In PRE,
– E is partially available at P if it is previously evaluated along at 

least one path to P, with no subsequent redefinitions of operands.
– If so, we might be able to eliminate computation at P, if we can 

insert computations to make it fully redundant.
• Occurrences of E where E is partially available are candidates for 

li i ti

Carnegie Mellon

elimination.
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Finding Partially Available Expressions

• Forward flow problem
– Lattice = { 0, 1 }, meet is union (), Top = 0 (not PAVAIL), entry = 0

• PAVOUT[i] = (PAVIN[i] – KILL[i])  AVLOC[i][ ] ( [ ] [ ]) [ ]

• PAVIN[i] =

• For a block,
• Expression is locally available (AVLOC) if downwards exposed.
• Expression is killed (KILL) if any assignments to operands.

 0                      i = entry

 PAVOUT[p]     otherwise
p  preds(i)

Carnegie Mellon
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… = a + b 
a = …

a = …     
… = a + b
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Partial Availability Example

• For expression a+b. 

a  = …     KILL = 1
AVLOC = 0

PAVIN = 
PAVOUT =

t1 = a + b 

a  = …    

AVLOC  0

KILL = 0
AVLOC = 1

KILL = 1

PAVOUT 

PAVIN = 
PAVOUT =

PAVIN = 

Carnegie Mellon

• Occurrence in loop is partially redundant.
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t2 = a + b AVLOC = 1 PAVOUT =

Where Can We Insert Computations?

• Safety: never introduce a new expression along any path.

t1 = a + b 

– Insertion could introduce exception, change program behavior.
– If we can add a new basic block, can insert safely in most cases.

t3 = a + b  

Carnegie Mellon

– Solution: insert expression only where it is anticipated.

• Performance: never increase the # of computations on any path.
– Under simple model, guarantees program won’t get worse.
– Reality: might increase register lifetimes, add copies, lose.
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Finding Anticipated Expressions

• Backward flow problem
– Lattice = { 0, 1 }, meet is intersect (), top = 1 (ANT), exit = 0

• ANTIN[i] = ANTLOC[i]  (ANTOUT[i] - KILL[i]) [ ] [ ] ( [ ] [ ])

• ANTOUT[i] =

• For a block,
• Expression locally anticipated (ANTLOC) if upwards exposed.

 0                      i = exit

 ANTIN[s]     otherwise
s  succ(i)

… = a + ba = …

Carnegie Mellon
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…  a + b 
a = …

a  …     
… = a + b

Anticipation Example

• For expression a+b. 

a  = …     KILL = 1
ANTLOC = 0

ANTIN = 
ANTOUT =

t1 = a + b 

a  = …    

ANTLOC  0

KILL = 0
ANTLOC = 1

KILL = 1

ANTOUT 

ANTIN = 
ANTOUT =

ANTIN = 

Carnegie Mellon

• Expression is anticipated at end of first block.
• Computation may be safely inserted there.
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t2 = a + b ANTLOC = 0 ANTOUT =
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Where Do We Want to Insert Computations?

• Morel-Renvoise and variants: “Placement Possible” 
– Dataflow analysis shows where to insert:

• PPIN = “Placement possible at entry of block or before.”
PPOUT  “Pl t ibl  t it f bl k  b f ”• PPOUT = “Placement possible at exit of block or before.”

– Insert at earliest place where PP = 1.
– Only place at end of blocks,

• PPIN really means “Placement possible or not necessary in each 
predecessor block.”

– Don’t need to insert where expression is already available.

• INSERT[i] = PPOUT[i]  (PPIN[i]  KILL[i])  AVOUT[i]

Carnegie Mellon

– Remove (upwards-exposed) computations where PPIN=1.

• DELETE[i] = PPIN[i]  ANTLOC[i]
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Where Do We Want to Insert?  Example

a  = …     PPIN = 
PPOUT = 

t1 = a + b 

a  = …    

PPOUT  

PPIN =
PPOUT =

PPIN =

Carnegie Mellon
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t2 = a + b PPOUT =

Formulating the Problem

• PPOUT: we want to place at output of this block only if
– we want to place at entry of all successors

• PPIN: we want to place at input of this block only if (all of):p p y
– we have a local computation to place, or a placement at the end of 

this block which we can move up
– we want to move computation to output of all predecessors where 

expression is not already available (don’t insert at input)
– we can gain something by placing it here (PAVIN)

• Forward or Backward? BOTH! 

P bl  i  bidi ti l  b t l tti  {0  1} i  fi it  

Carnegie Mellon

• Problem is bidirectional, but lattice {0, 1} is finite, so
– as long as transfer functions are monotone, it converges.
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Computing “Placement Possible”

• PPOUT: we want to place at output of this block only if
– we want to place at entry of all successors

• PPOUT[i] =  0                      i = exit
PPOUT[i] = 

• PPIN: we want to place at start of this block only if (all of):
– we have a local computation to place, or a placement at the end of 

this block which we can move up
– we want to move computation to output of all predecessors where 

expression is not already available (don’t insert at input)
– we gain something by moving it up (PAVIN heuristic)

  PPIN[s]         otherwise
s  succ(i)

Carnegie Mellon

we gain something by moving it up (PAVIN heuristic)

• PPIN[i] = 
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 0                                         i = exit
([ANTLOC[i]  (PPOUT[i] – KILL[i])]

 P(PPOUT[p]  AVOUT[p])        otherwise
 PAVIN[i])

p  preds(i)

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“Placement Possible” Example 1

a  = …     KILL = 1
AVLOC = 0

PAVIN = 0
PAVOUT = 0

PPIN = 

t1 = a + b 

a  = …    

ANTLOC = 0

KILL = 0
AVLOC = 1
ANTLOC = 1

KILL = 1
AVLOC  1

AVOUT = 0

PAVIN = 1
PAVOUT = 1
AVOUT = 0

PAVIN = 1 
PAVOUT  1

PPOUT =

PPIN = 

PPOUT =

PPIN = 

Carnegie Mellon
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t2 = a + b AVLOC = 1
ANTLOC = 0

PAVOUT = 1
AVOUT = 1 PPOUT =

“Placement Possible” Example 2

a  = … 
t1 = a + b

KILL = 1
AVLOC = 1

PAVIN = 0
PAVOUT = 1

PPIN = 

a = …   

t2 = a + b 

ANTLOC = 0

KILL = 1
AVLOC = 0
ANTLOC = 0

KILL = 0
AVLOC  1

AVOUT = 1

PAVIN = 0
PAVOUT = 0
AVOUT = 0

PAVIN = 1 
PAVOUT  1

PPOUT =

PPIN = 

PPOUT =

PPIN = 

Carnegie Mellon
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AVLOC = 1
ANTLOC = 1

PAVOUT = 1
AVOUT = 1 PPOUT =

“Placement Possible” Correctness

• Convergence of analysis: transfer functions are monotone.
• Safety: Insert only if anticipated.

PPIN[i]  (PPOUT[i] KILL[i])  ANTLOC[i]PPIN[i]  (PPOUT[i] – KILL[i])  ANTLOC[i]

PPOUT[i] = 

• INSERT  PPOUT  ANTOUT, so insertion is safe.

• Performance: never increase the # of computations on any path 

 0                      i = exit

 PPIN[s]         otherwise
s  succ(i)

Carnegie Mellon

p y p

• DELETE = PPIN  ANTLOC
• On every path from an INSERT, there is a DELETE.
• The number of computations on a path does not increase.
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Morel-Renvoise Limitations

• Movement usefulness tied to PAVIN heuristic
– Makes some useless moves, might increase register lifetimes:

a+b

– Doesn’t find some eliminations:

a+b

Carnegie Mellon

• Bidirectional data flow difficult to compute.
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a+b
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Related Work

• Don’t need heuristic
– Dhamdhere, Drechsler-Stadel, Knoop,et.al.
– use restricted flow graph or allow edge placements.

• Data flow can be separated into unidirectional passes
– Dhamdhere, Knoop, et. al.

• Improvement still tied to accuracy of computational model
– Assumes performance depends only on the number of computations 

along any path.
– Ignores resource constraint issues: register allocation, etc.

Knoop  et al  give “earliest” and “latest” placement algorithms which 

Carnegie Mellon

– Knoop, et.al. give earliest  and latest  placement algorithms which 
begin to address this.

• Further issues: 
– more than one expression at once, strength reduction, redundant 

assignments, redundant stores.
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