
Lecture 11
Lazy Code MotionLazy Code Motion

I. Forms of redundancy (quick review)
• global common subexpression elimination• global common subexpression elimination
• loop invariant code motion
• partial redundancy

II L C d M ti Al ithII. Lazy Code Motion Algorithm
• Mathematical concept: a cut set
• Basic technique (anticipation)

3 t fi l ith• 3 more passes to refine algorithm

Reading: Chapter 9.5

Carnegie Mellon

g p

Todd C. Mowry 15745: Lazy Code Motion 1

Overview

• Eliminates many forms of redundancy in one fell swoop

• Originally formulated as 1 bi directional analysis• Originally formulated as 1 bi-directional analysis

• Lazy code motion algorithm
– formulated as 4 separate uni-directional passesp p

• backward, forward, forward, backward

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 2

I. Common Subexpression Elimination

a = b + c a = b + c a = b + c

b = 7 b = 7
f = b + c

a = b + c

d = b + c d = b + c d = b + c

• A common expression may have different values on different paths!

• On every path reaching p On every path reaching p,
– expression b+c has been computed
– b, c not overwritten after the expression

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 3

Loop Invariant Code Motion

a = b + c a = b + c

b = read() a = b + c

t = b + c
exit

a = t

• Given an expression (b+c) inside a loop,
– does the value of b+c change inside the loop?
– is the code executed at least once?

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 4

Partial Redundancy

d = b + c

a = b + c

• Can we place calculations of b+c
s h th t th t s th s ssi

d = b + c

such that no path re-executes the same expression

• Partial Redundancy Elimination (PRE)
subsumes: – subsumes:

• global common subexpression (full redundancy)
• loop invariant code motion (partial redundancy for loops)

Carnegie Mellon
M. LamCS243: Partial Redundancy Elimination 5

II. Lazy Code Motion
• Key observation:

– A bi-directional (!) data flow problem can be replaced with several
unidirectional data flow problems  much easierunidirectional data flow problems  much easier

– Better result as well!

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 6

Preparing the Flow Graph

a = b + c a = b + c

d = b + c
d = b + c

• Definition: Critical edges
– source basic block has multiple successors
– destination basic block has multiple predecessors

• Modify the flow graph: (treat every statement as a basic block)
– To keep algorithm simple: restrict placement of instructions to the To keep algorithm simple: restrict placement of instructions to the

beginning of a basic block
– Add a basic block for every edge that leads to a basic block with

multiple predecessors (not just on critical edges)

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 7

Full Redundancy: A Cut Set in a Graph
Key mathematical concept

entry

… = a+b

… = a+b… = a+b cut set

b

a = …
b = …p:

• Full redundancy at p: expression a+b redundant on all paths

… = a+b

y p p p
– a cut set: nodes that separate entry from p
– a cut set contains calculation of a+b
– a, b, not redefined

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 8

Partial Redundancy: Completing a Cut Set

… = a+b

entry

… = a+b… = a+b cut set

• Partial redundancy at p: redundant on some but not all paths
… = a+b

a = …
b = …

p:

y p p
– Add operations to create a cut set containing a+b
– Note: Moving operations up can eliminate redundancy

• Constraint on placement: no wasted operation
– a+b is “anticipated” at B if its value computed at B will be used along

ALL subsequent paths
– a, b not redefined, no branches that lead to exit without use

• Range where a+b is anticipated  Choice
Carnegie Mellon

• Range where a+b is anticipated  Choice

Todd C. Mowry15745: Lazy Code Motion 9

Pass 1: Anticipated Expressions

• Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated at the entry of b

An expression is anticipated if its value computed at point p

This pass does most of the heavy lifting in eliminating redundancy

• An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

Anticipated Expressions
Domain Sets of expressionsDomain Sets of expressions
Direction backward
Transfer Function fb(x) = EUseb  (x -EKillb)

EUse: used exp, EKill: exp killedEUse used exp, EKill exp killed
 

Boundary in[exit] = 
Initialization in[b] = {all expressions}

• First approximation:
• place operations at the frontier of anticipation

(b d b t t ti i t d d ti i t d)

Initialization in[b] = {all expressions}

Carnegie Mellon

(boundary between not anticipated and anticipated)

Todd C. Mowry15745: Lazy Code Motion 10

Examples (1)
See the algorithm in action

x = a + bx = a + b r = a + b a = 10

y = a + b

z = a + b

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 11

Examples (2)

x = a + b

z = a + b

• Cannot eliminate all redundancy

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 12

Examples (3)

x = a+b x = a+b

y = a+b y = a+b

a = 10 a = 10

• Do you know how the algorithm works without simulating it?

Carnegie Mellon

y g g

Todd C. Mowry15745: Lazy Code Motion 13

Pass 2: Place As Early As Possible

• First approximation: frontier between “not anticipated” & “anticipated”
• Complication: anticipation may oscillate

There is still some redundancy left!

a = 1

x = a+b

y = a+b

• Pretend we calculate expression e whenever it is anticipated
• e will be available at p if e has been “anticipated but not subsequently

killed” on all paths reaching p
Available Expressions

Domain Sets of expressions
Direction forward
Transfer Function fb(x) = (Anticipated[b].in  x) - EKillb
 

Boundary out[entry] = 

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 14

Initialization out[b] = {all expressions}

Early Placement

• earliest(b)
– set of expressions added to block b under early placement

• Place expression at the earliest point anticipated and not already
available
– earliest(b) = anticipated[b].in - available[b].in

• Algorithm
– For all basic block b, if x+y  earliest[b]

• at beginning of b:
create a new variable t
t = x+y,
replace every original x+y by t

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 15

Pass 3: Lazy Code Motion b = 1
Let’s be lazy without introducing redundancy.

• Delay creating redundancy to reduce register
pressure x = b+cp

b+• An expression e is postponable at a program point p if
– all paths leading to p have seen the earliest placement of e but not a

subsequent use

y = b+c

Postponable Expressions
Domain Sets of expressions
Direction forward
Transfer Function fb(x) = (earliest[b]  x) - EUseb

 

Boundary out[entry] = 

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 16

Initialization out[b] = {all expressions}

Latest: frontier at the end of “postponable” cut set

• latest[b] = (earliest[b]  postponable.in[b]) 
(EUseb  (s  succ[b](earliest[s]  postponable.in[s])))

• OK to place expression: earliest or postponable
• Need to place at b if either

– used in b, or
not OK to place in one of its successors– not OK to place in one of its successors

• Works because of pre-processing step (an empty block was introduced
to an edge if the destination has multiple predecessors)

• if b has a successor that cannot accept postponement, if b has a successor that cannot accept postponement,
b has only one successor

• The following does not exist:

OK to placeK p

OK to place not OK to place

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 17

Pass 4: Cleaning Up
Finally… this is easy, it is like liveness

x = a + b

not used afterwards

• Eliminate temporary variable assignments unused beyond current block
• Compute: Used.out[b]: sets of used (live) expressions at exit of b.

U d E iUsed Expressions
Domain Sets of expressions
Direction backward
Transfer Function fb(x) = (EUse[b]  x) - latest[b]Transfer Function fb(x) = (EUse[b]  x) - latest[b]

 

Boundary in[exit] = 
Initialization in[b] = 

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 18

n[]

Code Transformation

• For all basic blocks b,

if (x+y)  (latest[b]  used out[b])if (x+y)  (latest[b]  used.out[b])

at beginning of b:

add new t = x+y

replace every original x+y by t

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 19

4 Passes for Partial Redundancy Elimination

• Heavy lifting: Cannot introduce operations not executed originally
– Pass 1 (backward): Anticipation: range of code motion
– Placing operations at the frontier of anticipation gets most of the

redundancy
• Squeezing the last drop of redundancy:

An anticipation frontier may cover a subsequent frontierAn anticipation frontier may cover a subsequent frontier
– Pass 2 (forward): Availability
– Earliest: anticipated, but not yet available

• Push the cut set out as late as possible• Push the cut set out -- as late as possible
To minimize register lifetimes
– Pass 3 (forward): Postponability: move it down provided it does not

create redundancyy
– Latest: where it is used or the frontier of postponability

• Cleaning up
– Pass 4: Remove temporary assignment

Carnegie Mellon

ass Remove temporary ass gnment

Todd C. Mowry15745: Lazy Code Motion 20

Remarks

• Powerful algorithm
– Finds many forms of redundancy in one unified frameworkF m y f m f y f f m

• Illustrates the power of data flow
– Multiple data flow problems

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 21

