Lecture 11

Lazy Code Motion

I. Forms of redundancy (quick review)
« global common subexpression elimination
* loop invariant code motion
e partial redundancy

IT. Lazy Code Motion Algorithm

Mathematical concept: a cut set
* Basic technique (anticipation)
« 3 more passes to refine algorithm

Reading: Chapter 9.5
N g Meton [

Todd C. Mowry 15745: Lazy Code Motion 1

1
Overview

« Eliminates many forms of redundancy in one fell swoop
« Originally formulated as 1 bi-directional analysis

* Lazy code motion algorithm

— formulated as 4 separate uni-directional passes
e backward, forward, forward, backward

I Carnegie Mellon [

15745: Lazy Code Motion 2 Todd C. Mowry

I. Common Subexpression Elimination

[
\l

A common expression may have different values on different paths!

On every path reaching p,
— expression b+c has been computed

— b, c not overwritten after the expression

15745: Lazy Code Motion 3

Carnegie Mellon -

Todd C. Mowry

T
Loop Invariant Code Motion

v v v
—- —- F
a=->b+c a=>b+c
bziead() A/a=g+c
v exit
t=Db + cC v
—
a=-¢t
v

« Given an expression (b+c) inside a loop,
— does the value of b+c change inside the loop?
— is the code executed at least once?

I Carnegie Mellon [

15745: Lazy Code Motion 4 Todd C. Mowry

e
Partial Redundancy

« Can we place calculations of b+c
such that no path re-executes the same expression

* Partial Redundancy Elimination (PRE)

— subsumes:
* global common subexpression (full redundancy)
* loop invariant code motion (partial redundancy for loops)

I Carnegie Melion [

CS243: Partial Redundancy Elimination 5 M. Lam

e
IT. Lazy Code Motion

« Key observation:

— A bi-directional (!) data flow problem can be replaced with several
unidirectional data flow problems - much easier

— Better result as welll

I Carnegie Mellon [

15745: Lazy Code Motion 6 Todd C. Mowry

Preparing the Flow Graph

a=>b+c a=>b+c A/\
d=b + cC \/
d=Db + c

 Definition: Critical edges
— source basic block has multiple successors
— destination basic block has multiple predecessors

* Modify the flow graph: (treat every statement as a basic block)
— To keep algorithm simple: restrict placement of instructions to the
beginning of a basic block

— Add a basic block for every edge that leads to a basic block with
multiple predecessors (not just on critical edges)

I Carnegie Mellon [

15745: Lazy Code Motion 7 Todd C. Mowry

Full Redundancy: A Cut Set in a Graph

Key mathematical concept

entry

......
0
»,

]
Q
+
@y

1%
g

>~ ~ = a+b = a+b P CI.I"' Se'l'

-
¢¢¢¢
-

= a+b

* Full redundancy at p: expression a+b redundant on all paths
— a cut set: nodes that separate entry from p
— a cut set contains calculation of a+b
— a, b, not redefined

Carnegie Mellon -

15745: Lazy Code Motion 8 Todd C. Mowry

Partial Redundancy: Completing a Cut Set

L
-

3
.

:5- - a+b = ath|- cut set

e Partial redundancy at p: redundant on some but not all paths
— Add operations to create a cut set containing a+b
— Note: Moving operations up can eliminate redundancy

« Constraint on placement: no wasted operation

— a+b is "anticipated” at B if its value computed at B will be used along
ALL subsequent paths

— a, b not redefined, no branches that lead to exit without use
« Range where a+b is anticipated > Choice

Carnegie Mellon -

15745: Lazy Code Motion 9 Todd C. Mowry

T
Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy
« Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated at the entry of b

« An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

Anticipated Expressions

Domain Sets of expressions

Direction backward

Transfer Function | f (x) = EUse, U (x -EKill,)
EUse: used exp, EKill: exp killed

A N
Boundary infexit] = &
Initialization in[b] = {all expressions}

* First approximation:

* place operations at the frontier of anticipation
(boundary between not anticipated and anticipated)

I Carnegie Mellon [

15745: Lazy Code Motion 10 Todd C. Mowry

Examples (1)

See the algorithm in action

}
%\

X =a+b r=a+b>o a = 10
y =a+b
z=a+bhb

15745: Lazy Code Motion 1

Carnegie Mellon -

Todd C. Mowry

Examples (2)

O\

X =a+b

~.,
T~

Z=a+b

e Cannot eliminate all redundancy

I Carnegie Mellon [

15745: Lazy Code Motion 12 Todd C. Mowry

Examples (3)

v v
X = atb X = atb
>l >l
y = atb y = atb
a =10 a = 10
v v

« Do you know how the algorithm works without simulating it?

I Carnegie Mellon [

15745: Lazy Code Motion 13 Todd C. Mowry

e
Pass 2: Place As Early As Possible

There is still some redundancy left/
« First approximation: frontier between “not anticipated” & “anticipated”

° ° ° - l
Complication: anticipation may oscillate 12 = :

X = a+b
¥

+ N

y = atb

* Pretend we calculate expression e whenever it is anticipated

« e will be available at p if e has been "anticipated but not subsequently
killed" on all paths reaching p

Available Expressions
Domain Sets of expressions
Direction forward
Transfer Function | fy(x) = (Anticipated[bl.in U x) - EKill,
A N
Boundary out[entry] = &
Initialization out[b] = {all expressions}

I Carnegie Mellon [

15745: Lazy Code Motion 14 Todd C. Mowry

]
Early Placement

e earliest(b)
— set of expressions added to block b under early placement

* Place expression at the earliest point anticipated and not already
available

— earliest(b) = anticipated[b].in - available[b].in
« Algorithm

— For all basic block b, if x+y € earliest[b]
* at beginning of b:
create a new variable t
1= X+y,
replace every original x+y by t

I Carnegie Mellon [

15745: Lazy Code Motion 15 Todd C. Mowry

Pass 3: Lazy Code Motion

Let's be lazy without '/hfraducm_q redundancy.

 Delay creating redundancy to reduce register

pressure

« An expression e is postponable at a program point p if
— all paths leading to p have seen the earliest placement of e but not a

subsequent use

y = b+c

Postponable Expressions

Domain

Sets of expressions

Direction

forward

Transfer Function

fo(x) = (earliest[b] U x) - EUse,

VAN

M

Boundary

out[entry] = &

Initialization

out[b] = {all expressions}

I Carnegie Mellon [

15745: Lazy Code Motion

16

Todd C. Mowry

-]
Latest: frontier at the end of "postponable” cut set

« latest[b] = (earliest[b] u postponable.in[b]) n
(EUsey, U (Mg ¢ suceppiearliest[s] u postponable.in[s])))
« OK to place expression: earliest or postponable
* Need to place at b if either
— used in b, or
— not OK to place in one of its successors
« Works because of pre-processing step (an empty block was introduced
to an edge if the destination has multiple predecessors)

 if b has a successor that cannot accept postponement,
b has only one successor

« The following does not exist:

O\

OK to place not OK to place

OK to place

I Carnegie Mellon [

15745: Lazy Code Motion 17 Todd C. Mowry

e
Pass 4: Cleaning Up

Finally.. this is easy, it is like liveness

X =a+b

v
v

not used afterwards

« Eliminate temporary variable assignments unused beyond current block
« Compute: Used.out[b]: sets of used (live) expressions at exit of b.

Used Expressions

Domain Sets of expressions

Direction backward
Transfer Function fu(x) = (EUse[b] U x) - latest[b]

A v
Boundary in[exit] = &
Initialization in[b]= &

I Carnegie Mellon [

15745: Lazy Code Motion 18 Todd C. Mowry

-
Code Transformation

 For all basic blocks b,
if (x+y) € (latest[b] m used.out[b])
at beginning of b:
add new T = x+y

replace every original x+y by t

I Carnegie Mellon [

15745: Lazy Code Motion 19 Todd C. Mowry

e
4 Passes for Partial Redundancy Elimination

« Heavy lifting: Cannot introduce operations not executed originally
— Pass 1 (backward): Anticipation: range of code motion

— Placing operations at the frontier of anticipation gets most of the
redundancy

» Sgqueezing the last drop of redundancy:
An anticipation frontier may cover a subsequent frontier

— Pass 2 (forward): Availability
— Earliest: anticipated, but not yet available

* Push the cut set out -- as late as possible
To minimize register lifetimes

— Pass 3 (forward): Postponability: move it down provided it does not
create redundancy

— Latest: where it is used or the frontier of postponability
Cleaning up
— Pass 4: Remove temporary assignment

I Carnegie Mellon [

15745: Lazy Code Motion 20 Todd C. Mowry

-
Remarks

« Powerful algorithm
— Finds many forms of redundancy in one unified framework

« Tllustrates the power of data flow
— Multiple data flow problems

I Carnegie Mellon [

15745: Lazy Code Motion 21 Todd C. Mowry

