Lecture 12

Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7

Motivation for Studying Region-Based Analysis

- •**Exploit the structure of block-structured programs in data flow**
- \bullet **Tie in several concepts studied:**
	- Use of structure in induction variables, loop invariant
		- motivated by nature of the problem
		- \bullet This lecture: can we use structure for speed?
	- $-$ Iterative algorithm for data flow
		- This lecture: an alternative algorithm
	- Reducibility
		- all retreating edges of DFST are back edges
		- reducible graphs converge quickly
		- This lecture: algorithm exploits & requires reducibility
- \bullet **Use f p ulness in practice**
	- Faster for "harder" analyses
	- Useful for analyses related to structure
- •**Theoretically interesting: better understanding of data flow heoret cally nterest ng understand ng**

I. Big Picture

15-745: Region-Based Analysis 3 Todd C. Mowry

Basic Idea

•**In Iterative Analysis:**

- DEFINITION: Transfer function F_B : summarize effect from beginning to end of basic block B
- \bullet **In Region-Based Analysis:**
	- DEFINITION: Transfer function $\mathsf{F}_{\mathsf{R},\mathsf{B}}$: summarize effect from beginning of R to end of basic block B
	- Recursively

construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
	- out[B] = F_{P,B} (v)
	- $-$ in [B] = \wedge $_{\mathsf{B}'}$ out[B'], where B' is a predecessor of B

II. Algorithm

- 1. Operations on transfer functions
- 2. How to build nested regions?
- 3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

- \bullet **Example: Reaching Definitions**
- F(x) = Gen \cup (x Kill)
- F $_{2}(\mathsf{F}_{1}(\mathsf{x}))$ = Gen $_{2}\cup(\mathsf{F}_{1}(\mathsf{x})$ Kill $_{2})$ = Gen $_{2}$ \cup (Gen $_{1}$ \cup (x - Kill $_{1})$) - Kill $_{2})$ = Gen $_{2}$ \cup (Gen $_{1}$ - Kill $_{2})$ \cup (x - $\mathsf{n}_2\cup$ (Ge n_1 - Kill $_2)\cup$ (x - (Kill $_1\cup$ Kill $_2$))
- F $_1$ (x) \land F $_2$ (x) = Gen $_1$ \cup (x Kill $_1$) \cup Gen $_2$ \cup (x Kill $_2$) = (Gen $_{1}$ \cup Gen $_{2})$ \cup (x - (Kill $_{1}$ \cap Kill $_{2})$)
- $F^*(x) \leq F^n(x)$, $\forall n \geq 0$ = $\mathsf{x} \cup \mathsf{F}(\mathsf{x}) \cup \mathsf{F}(\mathsf{F}(\mathsf{x})) \cup ...$ = x \cup (Gen \cup (x - Kill)) \cup (Gen \cup ((Gen \cup (x - Kill)) - Kill)) \cup ... = Gen ∪ (x - ∅)

2. Structure of Nested Regions (An Example)

- • ^A**region** in a flow graph is a set of nodes that
	- –includes a **header**, which dominates all other nodes in a region
- **T1-T2 rule (Hecht & Ullman)**
	- T1: Remove a loop If n is a node with a <mark>loop</mark>, i.e. an edge n->n, delete that edge

• T2: Remove a vertex

If there is a node **n** that has a unique predecessor, m, then <mark>m</mark> may consume n by deleting ⁿ and making all successors of ⁿ be successors of m.

Example

- \bullet In reduced graph:
	- each vertex represents a subgraph of original graph (a **region**)).
	- each edge represents an edge in original graph
- • **Limit flow graph**: result of exhaustive application of T1 and T2
	- $-$ independent of order of application.
	- $-$ if limit flow graph has a single vertex \rightarrow reducible
- \bullet Can define larger regions (e.g. Allen&Cocke's intervals)
	- simple regions \blacktriangleright simple composition rules for transfer functions

15-745: Region-Based Analysis 8 Todd C. Mowry

- \bullet **Transfer function**
	- **FR,B: summarizes the effect from beginning of R to end of B FR,in(H2): summarizes the effect from beginning of R to beginning of H2**
		- $-$ Unchanged for blocks B in region R $_{1}$ (F $_{\mathsf{R,B}}$ = F $_{\mathsf{R1,B}}$)
		- $\,$ $\sf F_{\sf R,in(H2)}$ = \wedge p $\sf F_{\sf RP}$, where ${\sf p}$ is a predecessor of $\sf H_2$
		- $-$ For blocks B in region R₂: $\mathsf{F}_{\mathsf{R},\mathsf{B}}$ = $\mathsf{F}_{\mathsf{R2},\mathsf{B}}$ $\cdot\mathsf{F}_{\mathsf{R},\mathsf{in}(\mathsf{H2})}$

15-745: Region-Based Analysis 9 Todd C. Mowry

Transfer Functions for T1 Rule

- \bullet • Transfer Function F_{R,B}
	- $\mathsf{F}_{\mathsf{R},\mathsf{in}(\mathsf{H})}$ = ($\mathsf{\wedge}_{\mathsf{P}}\mathsf{F}_{\mathsf{R1},\mathsf{P}})$ *, where <code>p</code> is a predecessor of <code>H</code> in <code>R</code>
	- $F_{R,B}$ = $F_{R1,B}$ $F_{R,in(H)}$

First Example

- \bullet R: region name
- \bullet R': region whose header will be subsumed g

First Example

- •R: region name
- \bullet R': region whose header will be subsumed g

III. Complexity of Algorithm

 $3 \rightarrow 2$

 \blacktriangleright (1)

1

2 3

5

4

Carnegie Mellon

15-745: Region-Based Analysis 13 Todd C. Mowry

Optimization

- •**Let m = number of edges, n = number of nodes**
- \bullet **Ideas for optimization**
	- – $-$ If we compute $\mathsf{F}_{\mathsf{R},\mathsf{B}}$ for every region B is in, then it is very expensive
	- We are ultimately only interested in the entire region (E); we need to compute only F_{EB} for every B.
		- $\bullet~$ There are many common subexpressions between $\mathsf{F}_{\mathsf{E},\mathsf{B}1}$, $\mathsf{F}_{\mathsf{E},\mathsf{B}2}$, ...
		- Number of $\mathsf{F}_{\mathsf{E},\mathsf{B}}$ calculated = m
	- $-$ Also, we need to compute $\mathsf{F}_{\mathsf{R},\mathsf{in}(\mathsf{R}')}$, where R' represents the region whose header is subsumed.
		- Number of $\mathsf{F}_{\mathsf{R},\mathsf{B}}$ calculated, where R is not final = n
- \bullet Total number of $F_{R,B}$ calculated: (m + n)
	- $-$ Data structure keeps "header" relationship
		- \bullet Practical algorithm: $O($ m log n $)$
		- Complexity: O(m α (m,n)), α is inverse Ackermann function

Reducibility

- \bullet If no T1, T2 is applicable before graph is reduced to single node, then **split node** and continue
- •Worst case: exponential
- •Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow

- \bullet **Applicability**
	- $-$ Definitions of $\mathsf F^\star$ can make technique more powerful than iterative algorithms
	- $-$ Backward flow: reverse graph is not typically reducible.
		- Requires more effort to adapt to backward flow than iterative algorithm
	- $-$ More important for interprocedural optimization
- \bullet **Speed**
	- Irreducible graphs
		- Iterative algorithm can process irreducible parts uniformly
		- $\bullet~$ Serious "irreducibility" can be slow with region-based analysis
	- $-$ Reducible graph & Cycles do not add information (common).
		- Iterative: (depth + 2) passes depth is 2.75 average, independent of code length
		- Region-based analysis: Theoretically almost linear, typically $O($ m log n $)$
	- $-$ Reducible & Cycles add information
		- Iterative takes longer to converge
		- Region-based analysis remains the same