Lecture 12

Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7

Carnegie Mellon

Motivation for Studying Region-Based Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - <u>This lecture:</u> can we use structure for speed?
 - Iterative algorithm for data flow
 - <u>This lecture:</u> an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - <u>This lecture:</u> algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure
- Theoretically interesting: better understanding of data flow

Carnegie Mellon

I. Big Picture **B**₃ B_4 B_1 **B**₂ **B**₃ **B**₂ B_4 B_1 **B**₄ B_3 B_1 B₂ B_1 B₄ B₂ **B**₃ B_1 B_4 B₂ **B**₃

Carnegie Mellon Todd C. Mowry

<u>Basic Idea</u>

• In Iterative Analysis:

- DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B
- <u>In Region-Based Analysis:</u>
 - DEFINITION: Transfer function F_{R,B}: summarize effect from beginning of R to end of basic block B
 - Recursively

construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
 - $out[B] = F_{P,B}(v)$
 - in [B] = $\wedge_{B'}$ out[B'], where B' is a predecessor of B

Carnegie Mellon

II. Algorithm

- 1. Operations on transfer functions
- 2. How to build nested regions?
- 3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

- Example: Reaching Definitions
- $F(x) = Gen \cup (x Kill)$
- $F_2(F_1(x)) = Gen_2 \cup (F_1(x) Kill_2)$ = $Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2)$ = $Gen_2 \cup (Gen_1 - Kill_2) \cup (x - (Kill_1 \cup Kill_2))$

•
$$F_1(x) \wedge F_2(x) = Gen_1 \cup (x - Kill_1) \cup Gen_2 \cup (x - Kill_2)$$

= $(Gen_1 \cup Gen_2) \cup (x - (Kill_1 \cap Kill_2))$

• $F^*(x) \leq F^n(x), \forall n \geq 0$ = $x \cup F(x) \cup F(F(x)) \cup ...$ = $x \cup (Gen \cup (x - Kill)) \cup (Gen \cup ((Gen \cup (x - Kill)) - Kill)) \cup ...$ = $Gen \cup (x - \emptyset)$

Carnegie Mellon

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that
 - includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge n->n, delete that edge

• T2: Remove a vertex

If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

<u>Example</u>

- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex \rightarrow reducible
- Can define larger regions (e.g. Allen&Cocke's intervals)
 - simple regions \rightarrow simple composition rules for transfer functions

15-745: Region-Based Analysis

Carnegie Mellon

- Transfer function
 - $F_{R,B}$: summarizes the effect from beginning of R to end of B $F_{R,in(H2)}$: summarizes the effect from beginning of R to beginning of H2
 - Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R1,B}$)
 - $F_{R,in(H2)} = \Lambda_P F_{R,P}$, where p is a predecessor of H_2
 - For blocks B in region R_2 : $F_{R,B} = F_{R2,B} \cdot F_{R,in(H2)}$

15-745: Region-Based Analysis

9

Carnegie Mellon

Transfer Functions for T1 Rule

- Transfer Function $F_{R,B}$
 - $F_{R,in(H)} = (\Lambda_P F_{R1,P})^*$, where p is a predecessor of H in R
 - $F_{R,B} = F_{R1,B} \cdot F_{R,in(H)}$

Carnegie Mellon

<u>First Example</u>

R	T _{1/} T ₂	R'	$F_{R,in(R')}$	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}
R ₁	T ₂	B ₂					
R ₂	T ₂	R ₁					
R ₃	T ₁	R ₂					
R ₄	T ₂	B ₄					

- R: region name
- R': region whose header will be subsumed

First Example

R	$T_{1/}T_{2}$	R'	$F_{R,in(R')}$	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}
R ₁	T ₂	B ₂	F _{B1}	F _{B1}	$F_{B2} \cdot F_{R1,in(B2)}$		
R ₂	T ₂	R ₁	F _{B3}	$F_{R1,B1} \cdot F_{R2,in(R1)}$	$F_{R1,B2} \cdot F_{R2,in(R1)}$	F _{B3}	
R ₃	T ₁	R ₂	(F _{R2B1} ∧F _{R2B2})*	$F_{R2,B1}\cdotF_{R3,in(R2)}$	$F_{R2,B2}\cdotF_{R3,in(R2)}$	$F_{R2,B3}\cdotF_{R3,in(R2)}$	
R ₄	T ₂	B ₄	F _{R3B3} ∧F _{R3B2}	F _{R3,B1}	F _{R3,B2}	F _{R3,B3}	$F_{B4} \cdot F_{R4,in(B4)}$

- R: region name
- R': region whose header will be subsumed

III. Complexity of Algorithm

R	T _{1/} T 2	R'	$\mathbf{F}_{R,in(R')}$	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}	F _{R,85}
R ₁	T ₂	B ₂	F _{B2}	$F_{B1} \cdot F_{B2}$	F _{B2}			
R ₂	T ₂	R ₁	F _{B3}	$F_{R1,B1} \cdot F_{B3}$	$F_{R1,B2} \cdot F_{B3}$	F _{B3}		
R ₃	T ₂	R ₂	F _{B4}	$F_{R2,B1} \cdot F_{B4}$	$F_{R2,B2} \cdot F_{B4}$	$F_{R2,B3} \cdot F_{B4}$	F _{B4}	
R ₄	T ₂	R ₃	F _{B5}	$F_{R3,B1} \cdot F_{B5}$	$F_{R3,B2} \cdot F_{B5}$	$F_{R3,B3} \cdot F_{B5}$	$F_{B4} \cdot F_{B5}$	F _{B5}

Carnegie Mellon Todd C. Mowry

15-745: Region-Based Analysis

Optimization

- Let m = number of edges, n = number of nodes
- Ideas for optimization
 - If we compute $F_{R,B}$ for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only $F_{E,B}$ for every B.
 - There are many common subexpressions between $F_{E,B1}$, $F_{E,B2}$, ...
 - Number of F_{E,B} calculated = m
 - Also, we need to compute $F_{R,in(R')}$, where R' represents the region whose header is subsumed.
 - Number of $F_{R,B}$ calculated, where R is not final = n
- Total number of $F_{R,B}$ calculated: (m + n)
 - Data structure keeps "header" relationship
 - Practical algorithm: O(m log n)
 - Complexity: $O(m\alpha(m,n))$, α is inverse Ackermann function

Carnegie Mellon

Reducibility

- If no T1, T2 is applicable before graph is reduced to single node, then split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

Carnegie Mellon

IV. Comparison with Iterative Data Flow

- Applicability
 - Definitions of F* can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization
- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with region-based analysis
 - Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically O(m log n)
 - Reducible & Cycles add information
 - Iterative takes longer to converge
 - Region-based analysis remains the same

Carnegie Mellon