
Lecture 15

Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm
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I. Motivation

• Problem
– Allocation of variables (pseudo-registers) to hardware registers in a 

dprocedure

• Perhaps the most important optimization
Directly reduces running time – Directly reduces running time 

• (memory access  register access)
– Useful for other optimizations

• e g  CSE assumes old values are kept in registerse.g. CSE assumes old values are kept in registers.
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Goals

• Find an allocation for all pseudo-registers, if possible.
• If there are not enough registers in the machine, choose registers to If there are not enough registers in the machine, choose registers to 

spill to memory
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Example

A = …
IF A goto L1

B = … 
= A 

D = 

L1: C = … 
= A

D = 
= B + D = C + D
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II. An Abstraction for Allocation & Assignment

• Intuitively
– Two pseudo-registers interfere if at some point in the program 

th  t b th  th  s  ist  they cannot both occupy the same register. 

• Interference graph: an undirected graph, where
nodes = pseudo registers– nodes = pseudo-registers

– there is an edge between two nodes if their corresponding 
pseudo-registers interfere

• What is not represented
– Extent of the interference between uses of different variables
– Where in the program is the interferenceWhere in the program is the interference
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Register Allocation and Coloring

• A graph is  n-colorable if:
– every node in the graph can be colored with one of the n colors such 

th t t  dj t d s d  t h  th  s  lthat two adjacent nodes do not have the same color.

• Assigning n register (without spilling) = Coloring with n colors
i   d  t   i t  ( l ) h th t  t  dj t d  – assign a node to a register (color) such that no two adjacent nodes 

are assigned same registers(colors)

• Is spilling necessary? = Is the graph n-colorable?Is spilling necessary? = Is the graph n colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2
– Too expensive p
– Heuristics
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III. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
 h i ti  t  t  t  fi d  l i– use heuristics to try to find an n-coloring

• Success:
– colorable and we have an assignment

• Failure:
– graph not colorable, or 
– graph is colorable, but it is too expensive to color
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Step 1a. Nodes in an Interference Graph

A = …
IF A goto L1

B = … 
= A 

L1: C = … 
= A

D = 
= B + D

D = 
= D + C

A = 2A  2     

= A A    
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Live Ranges and Merged Live Ranges

• Motivation: to create an interference graph that is easier to color
– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation: 

• can allocate same variable to different registers

• A live range consists of a definition and all the points in a program (e g  • A live range consists of a definition and all the points in a program (e.g. 
end of an instruction) in which that definition is live. 
– How to compute a live range?

• Two overlapping live ranges for the same variable must be merged

a = … a = … 

… = a 
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Example (Revisited)

A = ...  (A1)
IF A goto L1

{} {}
{A} {A1}
{A} {A }

Live Variables
Reaching Definitions

IF A goto L1

L1:
C    (C )

B = ...  (B1)
= A

{A} {A1}

{A} {A1}
{A,B} {A1,B1} {A} {A1}C = ...  (C1)

= A
D = ...  (D1) 

= A
D = B  (D2) 

{ , } { 1, 1}
{B} {A1,B1}
{D} {A1,B1,D2}

{ } { 1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

MergeA = 2  (A2)
{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

= A
ret D

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}
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Merging Live Ranges

• Merging definitions into equivalence classes
– Start by putting each definition in a different equivalence class
– For each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions for 
the variable, then:

– merge the equivalence classes of all such definitions into one merge the equivalence classes of all such definitions into one 
equivalence class

• From now on, refer to merged live ranges simply as live ranges
– merged live ranges are also known as “webs”
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Step 1b. Edges of Interference Graph

• Intuitively:
– Two live ranges (necessarily of different variables) may interfere

if th  l  t s  i t i  th  if they overlap at some point in the program.
– Algorithm:

• At each point in the program:
enter an edge for every pair of live ranges at that point– enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
– Algorithm: g

• check for interference only at the start of each live range
– Faster
– Better qualityq y
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Example 2

IF Q goto L1

A = … L1: B = … 

IF Q goto L2

L2: … = B… = A 
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Step 2. Coloring

• Reminder: coloring for n > 2 is NP-complete

• Observations:
– a node with degree < n 

• can always color it successfully, given its neighbors’ colors

– a node with degree = n 

– a node with degree > n 
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Coloring Algorithm

• Algorithm:
– Iterate until stuck or done

P k  d  h d   • Pick any node with degree < n
• Remove the node and its edges from the graph

– If done (no nodes left)
• reverse process and add colors• reverse process and add colors

• Example (n = 3):

B

CE A

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail

D
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What Does Coloring Accomplish?

• Done: 
– colorable, also obtained an assignment

• Stuck: 
– colorable or not?  

BB

CE A

D
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What if Coloring Fails?

• Use heuristics to improve its chance of success and to spill code

Build interference graphg p

Iterative until there are no nodes left
If there exists a node v with less than n neighbor

place v on stack to register allocateplace v on stack to register allocate
else

v = node chosen by heuristics 
(least frequently executed, has many neighbors)

place v on stack to register allocate (mark as spilled)place v on stack to register allocate (mark as spilled)
remove v and its edges from graph

While stack is not empty
R   f  kRemove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors 
(guaranteed to be possible for nodes not marked as spilled)
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Summary

• Problems:
– Given n registers in a machine, is spilling avoided?
– Find an assignment for all pseudo-registers, whenever possible.

• Solution:
– Abstraction: an interference graphAbstract on  an interference graph

• nodes: live ranges
• edges: presence of live range at time of definition

– Register Allocation and Assignment problems 
• equivalent to n-colorability of interference graph

 NP-complete
– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment
• not successful: colorability unknown & no assignment
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