
Lecture 15

Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

R di : ALSU 8 8 4Reading: ALSU 8.8.4

Carnegie Mellon

Todd C. Mowry 15-745: Register Allocation 1

I. Motivation

• Problem
– Allocation of variables (pseudo-registers) to hardware registers in a

dprocedure

• Perhaps the most important optimization
Directly reduces running time – Directly reduces running time

• (memory access  register access)
– Useful for other optimizations

• e g CSE assumes old values are kept in registerse.g. CSE assumes old values are kept in registers.

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 2

Goals

• Find an allocation for all pseudo-registers, if possible.
• If there are not enough registers in the machine, choose registers to If there are not enough registers in the machine, choose registers to

spill to memory

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 3

Example

A = …
IF A goto L1

B = …
= A

D =

L1: C = …
= A

D =
= B + D = C + D

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 4

II. An Abstraction for Allocation & Assignment

• Intuitively
– Two pseudo-registers interfere if at some point in the program

th t b th th s ist they cannot both occupy the same register.

• Interference graph: an undirected graph, where
nodes = pseudo registers– nodes = pseudo-registers

– there is an edge between two nodes if their corresponding
pseudo-registers interfere

• What is not represented
– Extent of the interference between uses of different variables
– Where in the program is the interferenceWhere in the program is the interference

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 5

Register Allocation and Coloring

• A graph is n-colorable if:
– every node in the graph can be colored with one of the n colors such

th t t dj t d s d t h th s lthat two adjacent nodes do not have the same color.

• Assigning n register (without spilling) = Coloring with n colors
i d t i t (l) h th t t dj t d – assign a node to a register (color) such that no two adjacent nodes

are assigned same registers(colors)

• Is spilling necessary? = Is the graph n-colorable?Is spilling necessary? = Is the graph n colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2
– Too expensive p
– Heuristics

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 6

III. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
 h i ti t t t fi d l i– use heuristics to try to find an n-coloring

• Success:
– colorable and we have an assignment

• Failure:
– graph not colorable, or
– graph is colorable, but it is too expensive to color

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 7

Step 1a. Nodes in an Interference Graph

A = …
IF A goto L1

B = …
= A

L1: C = …
= A

D =
= B + D

D =
= D + C

A = 2A 2

= A A

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 8

Live Ranges and Merged Live Ranges

• Motivation: to create an interference graph that is easier to color
– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation:

• can allocate same variable to different registers

• A live range consists of a definition and all the points in a program (e g • A live range consists of a definition and all the points in a program (e.g.
end of an instruction) in which that definition is live.
– How to compute a live range?

• Two overlapping live ranges for the same variable must be merged

a = … a = …

… = a

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 9

Example (Revisited)

A = ... (A1)
IF A goto L1

{} {}
{A} {A1}
{A} {A }

Live Variables
Reaching Definitions

IF A goto L1

L1:
C (C)

B = ... (B1)
= A

{A} {A1}

{A} {A1}
{A,B} {A1,B1} {A} {A1}C = ... (C1)

= A
D = ... (D1)

= A
D = B (D2)

{ , } { 1, 1}
{B} {A1,B1}
{D} {A1,B1,D2}

{ } { 1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

MergeA = 2 (A2)
{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

= A
ret D

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 10

Merging Live Ranges

• Merging definitions into equivalence classes
– Start by putting each definition in a different equivalence class
– For each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions for
the variable, then:

– merge the equivalence classes of all such definitions into one merge the equivalence classes of all such definitions into one
equivalence class

• From now on, refer to merged live ranges simply as live ranges
– merged live ranges are also known as “webs”

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 11

Step 1b. Edges of Interference Graph

• Intuitively:
– Two live ranges (necessarily of different variables) may interfere

if th l t s i t i th if they overlap at some point in the program.
– Algorithm:

• At each point in the program:
enter an edge for every pair of live ranges at that point– enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
– Algorithm: g

• check for interference only at the start of each live range
– Faster
– Better qualityq y

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 12

Example 2

IF Q goto L1

A = … L1: B = …

IF Q goto L2

L2: … = B… = A

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 13

Step 2. Coloring

• Reminder: coloring for n > 2 is NP-complete

• Observations:
– a node with degree < n 

• can always color it successfully, given its neighbors’ colors

– a node with degree = n 

– a node with degree > n 

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 14

Coloring Algorithm

• Algorithm:
– Iterate until stuck or done

P k d h d • Pick any node with degree < n
• Remove the node and its edges from the graph

– If done (no nodes left)
• reverse process and add colors• reverse process and add colors

• Example (n = 3):

B

CE A

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail

D

Carnegie Mellon

• Avoids making arbitrary decisions that make coloring fail

Todd C. Mowry15-745: Register Allocation 15

What Does Coloring Accomplish?

• Done:
– colorable, also obtained an assignment

• Stuck:
– colorable or not?

BB

CE A

D

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 16

What if Coloring Fails?

• Use heuristics to improve its chance of success and to spill code

Build interference graphg p

Iterative until there are no nodes left
If there exists a node v with less than n neighbor

place v on stack to register allocateplace v on stack to register allocate
else

v = node chosen by heuristics
(least frequently executed, has many neighbors)

place v on stack to register allocate (mark as spilled)place v on stack to register allocate (mark as spilled)
remove v and its edges from graph

While stack is not empty
R f kRemove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors
(guaranteed to be possible for nodes not marked as spilled)

Carnegie Mellon

g p p

Todd C. Mowry15-745: Register Allocation 17

Summary

• Problems:
– Given n registers in a machine, is spilling avoided?
– Find an assignment for all pseudo-registers, whenever possible.

• Solution:
– Abstraction: an interference graphAbstract on an interference graph

• nodes: live ranges
• edges: presence of live range at time of definition

– Register Allocation and Assignment problems
• equivalent to n-colorability of interference graph

 NP-complete
– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment
• not successful: colorability unknown & no assignment

Carnegie Mellon
Todd C. Mowry15-745: Register Allocation 18

