
1

Lecture 16

Register Allocation:Register Allocation:

Coalescing and Spilling

Carnegie Mellon

(Slides courtesy of Seth Goldstein and David Koes.)

Todd C. Mowry 15-745: Register Spilling 1

Review: An Example, k=4
v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 2

Review: An Example, k=4
v <- 1

w <- v + 3

x <- w + v

v

w

x

u
t

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 3

Compute live ranges

Review: An Example, k=4

v

v <- 1

w <- v + 3

x <- w + v

v

w

x

u
t

x w

u

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 4

Construct the interference graph

t

2

Review: An Example, k=4

vv

Voila, registers are assigned!v <- 1

w <- v + 3

x <- w + v

x w

u

x

u

w

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 5

Color the graph
tt

But, can we do better?

An Example, k=4

vv

v <- 1

w <- v + 3

x <- w + v

x w

u

x

u

w

v

w

x

u
t

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 6

tt

u & v are special. They interfere, but only through a move!

An Example, k=4
uv <- 1

w <- uv + 3

x <- w + uv
vv

u <- v

t <- uv + x

<- w

<- t

<- uv

x w

u

x

u

w

uv

w

x

uv
t

uvuv

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 7

tt

Rewrite the code to coalesce u & v

Is Coalescing Always Good?

y

u x

uv

Was 2-colorable,
now it needs 3 colors

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 8

b

av

So, we treat moves specially.

3

An Example, k=4

vv

v <- 1

w <- v + 3

x <- w + v

uvx w

u

x

u

w

v

w

x

u
t

uv

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 9

tt

Interference from moves become “move edges.”

An Example, k=3
v <- 1

w <- v + 3

x <- w + v

v

w

x

u
t

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 10

Compute live ranges

An Example, k=3

v

v <- 1

w <- v + 3

x <- w + v

v

w

x

u
t

x w

u

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 11

Construct the interference graph

t

An Example, k=3

v

v <- 1

w <- v + 3

x <- w + v

x w

u

x w

u <- v

t <- u + x

<- w

<- t

<- u

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 12

tt We need to spill

Color the interference graph

4

An Example, k=3
v <- 1

w <- v + 3

M[]<- w

w’ <- M[]

x <- w’ + v

u <- v

t <- u + x

w’’ <- M[]

Rewrite program

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 13

<- w’’

<- t

<- u

An Example, k=3

w

v <- 1

w <- v + 3

M[]<- w

(Old)

v
x

w’

w’ <- M[]

x <- w’ + v

u <- v

t <- u + x

w’’ <- M[]

v

w

x

u
t

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 14

Spilling reduces live ranges, which
decreases register pressure.

Recalculate live ranges

u

t

w’’ <- w’’

<- t

<- u

An Example, k=3
v <- 1

w <- v + 3

M[]<- w w
v

w’ <- M[]

x <- w’ + v

u <- v

t <- u + x

w’’ <- M[]

v
x

w’ x

u

w w’ w’’

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 15

Recalculate interference graph

<- w’’

<- t

<- u u

t

w’’

t

An Example, k=3

v

v <- 1

w <- v + 3

M[]<- w w

uvuvx

u

x w w’ w’’w w’ w’’

w’ <- M[]

x <- w’ + v

u <- v

t <- u + x

w’’ <- M[]

v
x

w’

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 16

Recolor the graph
tt

<- w’’

<- t

<- u u

t

w’’

5

Things We Have Seen So Far
• Interference Graph
• Coalescing
• Coloring
• Spilling• Spilling

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 17

General Plan

• Construct an interference graph
• Respect special registers:

– avoid reserved registers
– use registers properly
– respect distinction between callee/caller save registers

• Map temporaries to registers
• Generate code to save & restore
• Deal with spills

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 18

Special Registers

• Which registers can be used?
– Some registers have special uses.

• Register 0 or 31 is often hardwired to contain 0.
S i l i t t h ld t dd t k i t f i t • Special registers to hold return address, stack pointer, frame pointer,
global area, etc.

• Reserved registers for operating system.
– Typically, leaves about 20 or so registers for other general uses.

• Impact on register allocation:
– Temps should be assigned only to the non-reserved registers.
– Hard registers are pre-colored in the interference graph.

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 19

Register Usage Conventions

• Certain registers are used for specific purposes by standard calling
convention.
– 4-6 argument registers.

The first 4 6 arguments to procedures/functions are always passed in • The first 4-6 arguments to procedures/functions are always passed in
these registers.

– ~8 callee-save registers.
• These registers must be preserved across procedure calls. Thus, if a

procedure wants to use a callee-save register, it must first save the old
value and then restore it before returning.

– The remainder are caller-save registers.
• These are not preserved across procedure calls. Thus, a procedure is

free to use them without saving first

Carnegie Mellon

free to use them without saving first.
• Includes the argument registers.

Todd C. Mowry15-745: Register Spilling 20

6

Spilling to Memory

• CISC architectures
– can operate on data in memory directly
– memory operations are slower than register operations

• RISC architectures
– machine instructions can only apply to registers
– Use

• must first load data from memory to a register before use
– Definition

• must first compute RHS in a register
• store to memory afterwards

Carnegie Mellon

– Even if spilled to memory, needs a register at time of use/definition

Todd C. Mowry15-745: Register Spilling 21

Extending Coloring: Design Principles

• A pseudo-register is
– Colored successfully: allocated a hardware register
– Not colored: left in memory

• Objective function
– Cost of an uncolored node:

• proportional to number of uses/definitions (dynamically)
• estimate by its loop nesting

– Objective: minimize sum of cost of uncolored nodes
• Heuristics

– Benefit of spilling a pseudo-register:
 l b l f d f h

Carnegie Mellon

• increases colorability of pseudo-registers it interferes with
• can approximate by its degree in interference graph

– Greedy heuristic
• spill the pseudo-register with lowest cost-to-benefit ratio, whenever

spilling is necessary

Todd C. Mowry15-745: Register Spilling 22

Coloring Algorithm (Without Spilling)

Build interference graph

Iterate until there are no nodes left:
If there exists a node v with less than n neighbors

place v on stack to register allocate
else

return (coloring heuristics fail)
remove v and its edges from graph

While stack is not empty

Carnegie Mellon

Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Todd C. Mowry15-745: Register Spilling 23

Chaitin: Coloring and Spilling

• Identify spilling
Build interference graph
Iterate until there are no nodes left

If there exists a node v with less than n neighbor
l t k t i t ll tplace v on stack to register allocate

else
v = node with highest degree-to-cost ratio
mark v as spilled

remove v and its edges from graph
• Spilling may require use of registers; change interference graph

While there is spilling
rebuild interference graph and perform step above

• Assign registers

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 24

gn r g r
While stack is not empty

Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

7

Spilling

• What should we spill?
– Something that will eliminate a lot of interference edges
– Something that is used infrequently
– Maybe something that is live across a lot of calls?

• One Heuristic:
– spill cheapest live range (aka “web”)
– Cost = [(# defs & uses)*10loop-nest-depth]/degree

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 25

Quality of Chaitin’s Algorithm

• Giving up too quickly

B

• An optimization: “Prioritize the coloring”

A C

D

E

Carnegie Mellon

An optimization: Prioritize the coloring
– Still eliminate a node and its edges from graph
– Do not commit to “spilling” just yet
– Try to color again in assignment phase.

Todd C. Mowry15-745: Register Spilling 26

Setting Up For Better Spills

• We want variables that are not live across procedures to be allocated
to caller-save registers. Why?

• We want variables live across many procedures to be in callee-save
registersregisters

• We want live ranges of pre-colored nodes to be short!
• We prefer to use callee-save registers last.

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 27

Splitting Live Ranges

• Recall: Split pseudo-registers into live ranges to create an interference
graph that is easier to color
– Eliminate interference in a variable’s “dead” zones.

I s fl ibilit i ll ti– Increase flexibility in allocation:
• can allocate same variable to different registers

IF A goto L1
A = ...

B = ... L1: C =...
= A

D
= A

D =

A1

CB= B = C

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 28

A = D

= A

D

A2

8

Insight

• Split a live range into smaller regions (by paying a small cost) to create
an interference graph that is easier to color
– Eliminate interference in a variable’s “nearly dead” zones.

Cost: Memory loads and stores • Cost: Memory loads and stores
– Load and store at boundaries of regions with no activity

• # active live ranges at a program point can be > # registers

– Can allocate same variable to different registers
• Cost: Register operations

– a register copy between regions of different assignments
• # active live ranges cannot be > # registers

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 29

Examples

Example 1:

FOR i = 0 TO 10
FOR j = 0 TO 10000

A = A + ...
(does not use B)

FOR j = 0 TO 10000
B = B + ...
(does not use A)

Example 2:

a =

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 30

b =
= a + b

c =

= b+c

b =

c =
= a + c

Live Range Splitting

• When do we apply live range splitting?

• Which live range to split?

• Where should the live range be split?

• How to apply live-range splitting with coloring?
– Advantage of coloring:

• defers arbitrary assignment decisions until later
– When coloring fails to proceed, may not need to split live range

• degree of a node >= n does not mean that the graph definitely is not
colorable

Carnegie Mellon

– Interference graph does not capture positions of a live range

Todd C. Mowry15-745: Register Spilling 31

One Algorithm

• Observation: spilling is absolutely necessary if
– number of live ranges active at a program point > n

A l li s litti b f l i• Apply live-range splitting before coloring
– Identify a point where number of live ranges > n
– For each live range active around that point:

• find the outermost “block construct” that does not access the variable
– Choose a live range with the largest inactive region
– Split the inactive region from the live range

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 32

9

The Big Picture

Build

Simplify

Potential Spill

Select

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 33

Select

Actual Spill

Coalescing

v
v <- 1

w <- v + 3

M[]<- w

x w

u

w’ w’’w’ <- M[]

x <- w’ + v

u <- v

t <- u + x

w’’ <- M[]

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 34

t

Can u & v be coalesced?
Should u & v be coalesced?

<- w’’

<- t

<- u

Briggs: Conservative Coalescing

• Can coalesce u and v if:
– (# of neighbors of uv with degree ≥ k) < k

• Why?
– Simplify pass removes all nodes with degree < k
– # of remaining nodes < k
– Thus, uv can be simplified v

x w w’ w’’

uv

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 35

u

t

George: Iterated Coalescing

• Can coalesce u and v if:
– foreach neighbor t of u, either:

• t interferes with v, or,
d f t k• degree of t < k

• Why?
– let S be set of neighbors of u with degree < k
– If no coalescing, simplify removes all nodes in S; call that graph G1

– If we coalesce, we can still remove all nodes in S; call that graph G2

– G2 is a subgraph of G1

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 36

10

George

u
S1

S2 S3

S4
u

No coalescing, after
simplification

v
x1

x2
u

x1

x2

After coalescing and
simplification

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 37

uv
x1

x2

simplification

Why Two Methods?

• With Briggs, one needs to look at all neighbors of a & b
• With George, only need to look at neighbors of a.
• We need to insert hard registers in graph and they will have LARGE

dj listsadjacency lists.
• Hence:

– Precolored nodes have infinite degree
– No other precolored nodes in adjacency list
– Use George if one of a & b is precolored
– Use Briggs if both are temps

Carnegie Mellon
Todd C. Mowry15-745: Register Spilling 38

Where We Are

Build

SimplifySimplify

Potential Spill

Coalesce

Carnegie Mellon

Todd C. Mowry 15-745: Register Spilling 39

Select

Actual Spill

