Lecture 17

Intro to Instruction Scheduling

Reading: Chapter 10.1 -10.2

R carnegic Mellon [N

Todd C. Mowry 15745: Intro to Scheduling 1

-]
Optimization: What's the Point? (A Quick Review)

Machine-Independent Optimizations:

— e.g., constant propagation & folding, redundancy elimination, dead-
code elimination, etc.

— Goal: eliminate work

Machine-Dependent Optimizations:
— register allocation
» Goal: reduce cost of accessing data

— instruction scheduling
* Goal: 222

R carnegic Mellon [N

15745: Intro to Scheduling 2 Todd C. Mowry

]
The Goal of Instruction Scheduling

e Assume that the remaining instructions are all essential
— (otherwise, earlier passes would have eliminated them)

« How can we perform this fixed amount of work in less time?
— Answer: execute the instructions in paralle/

Time

Ry carnegic Mellon [N

15745: Intro to Scheduling 3 Todd C. Mowry

]
Hardware Support for Parallel Execution

« Three forms of parallelism are found in modern machines:

~ Pipelini . .
‘pelining . <= Instruction Scheduling

— Superscalar Processing

— Multiprocessing <4 Automatic Parallelization

(covered later in class)

Ry carnegic Mellon [N

15745: Intro to Scheduling 4 Todd C. Mowry

-
Pipelining

Basic idea:
— break instruction into sfages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

«— linstruction ——

IF = Instruction Fetch

IF | RF [EX | ME | WB RF = Decode & Register Fetch
EX = Execute on ALU

ME = Memory Access

Time WB = Write Back to Register File

v

Ry carnegic Mellon [N

15745: Intro to Scheduling 5 Todd C. Mowry

e
Pipelining Tllustration

IF

RF

EX

ME

W

Time

\ 4

IF

RF

EX

MEWS

IF

RF

EX

MEWE)

IF

RF

EX

ME

IF

RF

EX

MEWE

Ry carnegic Mellon [N

15745: Intro to Scheduling

6

Todd C. Mowry

e
Pipelining Tllustration

EXIMEIW R

0 B R | W R

* Inagiven cycle, each instruction is in a different stage

Ry carnegic Mellon [N

15745: Intro to Scheduling 7 Todd C. Mowry

Beyond 5-Stage Pipelines: Even More Parallelism

« Should we simply make pipelines deeper and deeper?

IF RF |» EX b ME WB

Pipe Register
v

Pipe Register
A 2

Pipe Register
2

Pipe Register
2

— registers between pipeline stages have fixed overheads
* hence diminishing returns with more stages (Amdahl's Law)
— value of pipe stage unclear if < time for integer add
« However, many consumers think “performance = clock rate"
— perceived need for higher clock rates -> deeper pipelines
— e.g., Pentium 4 processor had a 20-stage pipeline

I C=rnegic Mellon [
8 Todd C. Mowry

15745: Intro to Scheduling

Beyond Pipelining: "Superscalar” Processing

» Basic Idea:
— multiple (independent) instructions can proceed simultaneously
through the same pipeline stages

* Requires additional hardware

— example: "Execute” stage
sh s
- < < g g
5 5 o 5 2 2
gl EX b3 5 5 N)
) V © Y
2 & g g >
Abs’rr'ac’r. Hardware for Hardware for
Representation Scalar Pipeline: 2-way Superscalar:
1ALV 2 ALUs
Carnegie Mellon -

15745: Intro to Scheduling 9 Todd C. Mowry

e
Superscalar Pipeline Illustration

et iWB{ Original (scalar) pipeline:
o bl : « Only one instruction in a given

[]
IF |RF|EX|MEME pipe stage at a given time
° °

Superscalar pipeline:

IF [RF[EX{ME}W/ B » Multiple instructions in the same
pipe stage at the same time

i
.
2%
-
m
X
o,

IF RFIEXIMEWB

- - —

Time

v
=
)

R carnegic Mellon [N

15745: Intro to Scheduling 10 Todd C. Mowry

e
The Ideal Scheduling Outcome

e What prevents us from achieving this ideal?
Before After

— —
Time B T T) ¢ cyele

|

N cycles

y

\

Ry carnegic Mellon [N

15745: Intro to Scheduling 11 Todd C. Mowry

e
Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

15745: Intro to Scheduling 12 Todd C. Mowry

-
Limitation #1: Hardware Resources

e Processors have finite resources, and there are often constraints on
how these resources can be used.

Examples:
— Finite issue width
— Limited functional units (FUs) per given instruction type
— Limited pipelining within a given functional unit (FU)

Ry carnegic Mellon [N

15745: Intro to Scheduling 13 Todd C. Mowry

Finite Issue Width

 Prior to superscalar processing:
— processors only “issued” one instruction per cycle
« Even with superscalar processing:
— limit on total # of instructions issued per cycle
per cy

. Issue Width = infinite Issue Width = 4
Time e T
i HEEE EEEN = Ep
| t

4

Carnegie Mellon -

15745: Intro to Scheduling 14 Todd C. Mowry

Limited FUs per Instruction Type

* e.g., a4-way superscalar might only be able to issue up to 2 integer, 1
memory, and 1 floating-point insts per cycle

More Realistic

Original Code Unconstrained Int Mem FP
Time 5 T I T
I
4 : _L
12 1
Bottleneck
Jjj Integer Empty Slot
B Memory
v B Floating-Point
Carnegie Mellon -

15745: Intro to Scheduling 15 Todd C. Mowry

Limited Pipelining within a Functional Unit

« e.g.,only 1 new floating-point division once every 2 cycles

Schedule with Limited Pipelining

Time 3 . —_
J 9
: .
Jj Integer s
Bl Memory
_+ B Floating-Point Empty Slot

Carnegie Mellon -

15745: Intro to Scheduling 16 Todd C. Mowry

e
Limitations Upon Scheduling

1. Hardware Resources
—p 2. Data Dependences
3. Control Dependences

15745: Intro to Scheduling 17 Todd C. Mowry

T
Limitation #2: Data Dependences

« If we read or write a data location "too early”, the program may behave
incorrectly.

(Assume that initially, x = 0.)

???KX = 1; ???KX = 1; ???Ky = _X;
= X)t = 2; X1{1;

y = 1

Read-after-Write Write-after-Write Write-after-Read
("True" dependence) ("Output” dependence) | ("Anti" dependence)

|

Fundamental Can potentially fix through renaming.
(no simple fix)

Ry carnegic Mellon [N

15745: Intro to Scheduling 18 Todd C. Mowry

e
Why Data Dependences are Challenging

x = a[i];
*p - 1;
y = *qd;
*r = z;

e which of these instructions can be reordered?

» ambiguous data dependences are very common in practice
— difficult to resolve, despite fancy pointer analysis

Ry carnegic Mellon [N

15745: Intro to Scheduling 19 Todd C. Mowry

e
Given Ambiguous Data Dependences, What To Do?

x = ali];
*p - 1;
y = *qd;
*r = z;

« Conservative approach: don't reorder instructions
— ensures correct execution
— but may suffer poor performance

« Aggressive approach?
— is there a way to safely reorder instructions?

Ry carnegic Mellon [N

15745: Intro to Scheduling 20 Todd C. Mowry

e
Hardware Limitations: Multi-cycle Execution Latencies

« Simple instructions often “"execute” in one cycle
— (as observed by other instructions in the pipeline)
— e.g., integer addition

* More complex instructions may require multiple cycles
— e.g., infeger division, square-root
— cache misses!

* These latencies, when combined with data dependencies, can result in
non-trivial critical path lengths through code

Ry carnegic Mellon [N

15745: Intro to Scheduling 21 Todd C. Mowry

e
Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
—p 3. Control Dependences

15745: Intro to Scheduling 22 Todd C. Mowry

e
Limitation #3: Control Dependences

e What do we do when we reach a conditional branch?
— choose a "frequently-executed” path?
— choose multiple paths?

R carnegic Mellon [N

15745: Intro to Scheduling 23 Todd C. Mowry

e
Scheduling Constraints: Summary

e Hardware Resources

— finite set of FUs with instruction type, bandwidth, and latency
constraints

— cache hierarchy also has many constraints
« Data Dependences

— can't consume a result before it is produced

— ambiguous dependences create many challenges
« Control Dependences

— impractical o schedule for all possible paths

— choosing an "expected” path may be difficult
 recovery costs can be non-trivial if you are wrong

Ry carnegic Mellon [N

15745: Intro to Scheduling 24 Todd C. Mowry

Hardware- vs. Compiler-Based Scheduling

« The hardware can also attempt to reschedule instructions (on-the-fly)
to improve performance

* What advantages/disadvantages would hardware have (vs. the compiler)
when trying to reason about:

— Hardware Resources
— Data Dependences
— Control Dependences
e Which is better:
— doing more of the scheduling work in the compiler?
— doing more of the scheduling work in the hardware?

Ry carnegic Mellon [N

15745: Intro to Scheduling 25 Todd C. Mowry

.
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
D>
VLIW In-Order Out-of -Order

(Very Long Superscalar Superscalar

Instruction Word)

e.g.: Itanium e.g.: Original Pentium e.g.: Pentium 4

Ry carnegic Mellon [N

15745: Intro to Scheduling 26 Todd C. Mowry

.
VLIW Processors

Motivation:

— if the hardware spends zero (or almost zero) time thinking about
scheduling, it can run faster

Philosophy:
— give full control over scheduling to the compiler
Implementation:

— expose control over all FUs directly to software via a “very /ong
instruction word”

Int Mem FP Time

...lm.:

Carnegie Mellon -

15745: Intro to Scheduling 27 Todd C. Mowry

]
Compiling for VLIW

Predicting Execution Latencies:
— easy for most functional units (latency is fixed)
— but what about memory references?

Data Dependences:

— in "pure” VLIW, the hardware does not check for them
* the compiler takes them into account to produce safe code

whille (p "= NULL) {

- g i if (test(p->val))
e =c / 32 g->next = p->left;
f=g-e; P = p->next;
’ by
Example #1 Example #2

Ry carnegic Mellon [N

15745: Intro to Scheduling 28 Todd C. Mowry

]
"VLIW" Today

* Hardware checks for data dependences through memory
« Compiler can do a good job with register dependences

Die Photo

Intel/HP Itanium?2

Inst 2

Inst1

Inst O

Template

le——— 128-bit bundle —

Transmeta Crusoe 5400

Runtime software dynamically
generates VLIW code

R carnegic Mellon [N

15745: Intro to Scheduling

.
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
>
VLIW In-Order

Superscalar

Ry carnegic Mellon [N

15745: Intro to Scheduling 30 Todd C. Mowry

In-Order Superscalar Processors

In contrast with VLIW:
— hardware does full data dependence checking
— hence, no need to encode NOPs for empty slots

: . : I P
= Once an instruction cannot be issued, no nt Mem P Time
instructions after it will be issued.
Bottom Line: \
hardware matches code to available resources;

recompilation is not necessary for correctness

compiler’s role is still important Empty Slot
* for performance, not correctness!

Carnegie Mellon -

31 Todd C. Mowry

15745: Intro to Scheduling

.
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
F——msmm->
VLIW SIn-Or'der' Out-of -Order

uperscalar Superscalar

Ry carnegic Mellon [N

15745: Intro to Scheduling 32 Todd C. Mowry

]
QOut-of-Order Superscalar Processors

Motivation:

— when an instruction is stuck, perhaps there are subsequent
instructions that can be executed

«— suffers expensive cache miss
+— stuck waiting on true dependence

} <+<— these do not need to wait

Sounds great! But how does this complicate the haradware?

Ry carnegic Mellon [N

15745: Intro to Scheduling 33 Todd C. Mowry

QOut-of-Order Superscalar Processors: Hardware Overview

« fetch & graduate in-order, issue out-of-order

PC: Oxlc =

Inst.

Cache

\

Branch

Predictor

...........
Ty
1]
-
v

Reorder Buffer

Oxlc: b c / 3;
Ox18: z a + 2;
Ox14: vy X + 1;
O0x10: x = *p;

Complexity of checking
dependences increases
exponentially with
issue widthl

«— issue (out-of-order)
«— issue (out-of-order)

< can't issue
«— issue (cache miss)

Ry carnegic Mellon [N

15745: Intro to Scheduling

34

Todd C. Mowry

e
Compiler- vs. Hardware-Centric Scheduling: Bottom Line

Compiler-Centric Hardware-Centric
>
VLIW sIn-Or'der' Out-of -Order

uperscalar Superscalar

« High-end processors will probably remain out-of-order
— moving instructions small distances is probably useless
— BUT, moving instructions /arge distances may still help

« Cheap, power-efficient processors may be in-order/VLIW
— instruction scheduling may have a large impact

Ry carnegic Mellon [N

15745: Intro to Scheduling 35 Todd C. Mowry

e
Scheduling Roadmap

l

ll..

.
-
a
|
|]
|]
[]
n
|}
n
n
n
[]
[]
[]
[]
L |
L]
L]
L
L4

*

X =a+b e_X=a+bE lx = a + b

N /\ o, v d

74NN PEEETN I =g
___________ T

List Scheduling: Global Scheduling: Software Pipelining:
* withina basic block + agcross basic blocks * across loop iterations

Ry carnegic Mellon [N

15745: Intro to Scheduling 36 Todd C. Mowry

