
Carnegie Mellon

Lecture 18
List Scheduling & Global Scheduling

Reading: Chapter 10.3-10.4

Todd C. Mowry 15745: List & Global Scheduling 1

Carnegie Mellon

Review: The Ideal Scheduling Outcome

•  What prevents us from achieving this ideal?

15745: List & Global Scheduling

Time

N cycles

Before

1 cycle

After

Todd C. Mowry 2

Carnegie Mellon

Review: Scheduling Constraints

•  Hardware Resources
–  finite set of FUs with instruction type, bandwidth, and latency

constraints
–  cache hierarchy also has many constraints

•  Data Dependences
–  can’t consume a result before it is produced
–  ambiguous dependences create many challenges

•  Control Dependences
–  impractical to schedule for all possible paths
–  choosing an “expected” path may be difficult

•  recovery costs can be non-trivial if you are wrong

15745: List & Global Scheduling Todd C. Mowry 3

Carnegie Mellon

Scheduling Roadmap

15745: List & Global Scheduling

…

List Scheduling:
•  within a basic block

y = c + d

x = a + b

Global Scheduling:
•  across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
•  across loop iterations

y = c + d

x = a + b

Todd C. Mowry 4

Carnegie Mellon

List Scheduling

•  The most common technique for scheduling instructions within a basic
block

We don’t need to worry about:
–  control flow

We do need to worry about:
–  data dependences
–  hardware resources

•  Even without control flow, the problem is still NP-hard

15745: List & Global Scheduling

…
y = c + d

x = a + b

Todd C. Mowry 5

Carnegie Mellon

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:
–  “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J.

Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

15745: List & Global Scheduling

Inputs: Output:
Data Precedence

Graph (DPG)
Machine

Parameters Scheduled Code

I0

I3
I10
I7

I2
I1
I8

I9

I4
I6
I11
I5

Cycle

0
1
2
3
4

I0 I2

I6 I4

I3 I8

I1

I5

I9

of FUs:
 2 INT, 1 FP

Latencies:
 add = 1 cycle, …

Pipelining:
 1 add/cycle, …

Todd C. Mowry 6

Carnegie Mellon

List Scheduling: The Basic Idea

•  Maintain a list of instructions that are ready to execute
–  data dependence constraints would be preserved
–  machine resources are available

•  Moving cycle-by-cycle through the schedule template:
–  choose instructions from the list & schedule them
–  update the list for the next cycle

15745: List & Global Scheduling

I2 I0

Cycle

0
1
2

Todd C. Mowry 7

Carnegie Mellon

What Makes Life Interesting: Choice

Easy case:
–  all ready instructions can be scheduled this cycle

Interesting case:
–  we need to pick a subset of the ready instructions

•  List scheduling makes choices based upon priorities
–  assigning priorities correctly is a key challenge

15745: List & Global Scheduling

I5 I1 I7

I5 I1 I2 I7 I0 ???

Todd C. Mowry 8

Carnegie Mellon

Intuition Behind Priorities

•  Intuitively, what should the priority correspond to?
•  What factors are used to compute it?

–  data dependences?
–  machine parameters?

15745: List & Global Scheduling

I0 I2

I6 I4

I3 I8

I1

I5

I9

of FUs:
 2 INT, 1 FP

Latencies:
 add = 1 cycle, …

Pipelining:
 1 add/cycle, …

Todd C. Mowry 9

Carnegie Mellon

Representing Data Dependences:
The Data Precedence Graph (DPG)

•  Two different kinds of edges:

•  Why distinguish them?
–  do they affect scheduling differently?

•  What about output dependences?

15745: List & Global Scheduling

I0: x = 1;
I1: y = x;
I2: x = 2;
I3: z = x;

I2

I0

I3

I1

DPG Code
true “edges”: E

(read-after-write) e = (I0,I1)

e = (I2,I3)

x
x “anti-edges”: E’

(write-after-read) e’ = (I1,I2)

Todd C. Mowry 10

Carnegie Mellon

Computing Priorities

•  Let’s start with just true dependences (i.e. “edges” in DPG)
•  Priority = latency-weighted depth in the DPG

15745: List & Global Scheduling

I0 I2

I6 I4

I3 I8

I1

I5

I9

Todd C. Mowry 11

Carnegie Mellon

Computing Priorities (Cont.)

•  Now let’s also take anti-dependences into account
–  i.e. anti-edges in the set E’

15745: List & Global Scheduling

I0 I2

I6 I4

I3 I8

I1

I5

I9

e’ e’

Todd C. Mowry 12

Carnegie Mellon

List Scheduling Algorithm
cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {

 for op = (all nodes in ready-list in descending priority order) {
 if (an FU exists for op to start at cycle) {
 remove op from ready-list and add to inflight-list;
 add op to schedule at time cycle;
 if (op has an outgoing anti-edge)
 add all targets of op’s anti-edges that are ready to ready-list;
 }
 }
 cycle = cycle + 1;
 for op = (all nodes in inflight-list)
 if (op finishes at time cycle) {
 remove op from inflight-list;
 check nodes waiting for op & add to ready-list if all operands
available;

 }
 }

}

15745: List & Global Scheduling Todd C. Mowry 13

Carnegie Mellon

Example

•  2 identical fully-pipelined FUs
•  adds take 2 cycles; all other insts take 1 cycle

15745: List & Global Scheduling

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6 I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

Todd C. Mowry 14

Carnegie Mellon

Example

15745: List & Global Scheduling

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6 I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

Todd C. Mowry 15

•  2 identical fully-pipelined FUs
•  adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon

What if We Break Ties Differently?

15745: List & Global Scheduling

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6 I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

1

2 3 3 2 3

4 4 4 5

6

Todd C. Mowry 16

•  2 identical fully-pipelined FUs
•  adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon

What if We Break Ties Differently?

15745: List & Global Scheduling

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6 I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I10

Todd C. Mowry 17

•  2 identical fully-pipelined FUs
•  adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon

Contrasting the Two Schedules

•  Breaking ties arbitrarily may not be the best approach

15745: List & Global Scheduling

I1

I8

I5

I6 I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

Cycle

0
1
2
3
4
5

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I10 1

2 3 3 2 3

4 4 4 5

6

Todd C. Mowry 18

Carnegie Mellon

Backward List Scheduling

Modify the algorithm as follows:
–  reverse the direction of all edges in the DPG
–  schedule the finish times of each operation

•  start times must still be used to ensure FU availability

Impact of scheduling backwards:
–  clusters operations near the end (vs. the beginning)
–  may be either better or worse than forward scheduling

15745: List & Global Scheduling Todd C. Mowry 19

Carnegie Mellon

Backward List Scheduling Example:
Let’s Schedule it Forward First

Hardware parameters:
–  2 INT units: ADDs take 2 cycles; others take 1 cycle
–  1 MEM unit: stores (ST) take 4 cycles

15745: List & Global Scheduling

Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12

INT INT MEM LDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STe CMP

BR

LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR ---- ----

Todd C. Mowry 20

Carnegie Mellon

Now Let’s Try Scheduling Backward

15745: List & Global Scheduling

Cycle
0
1
2
3
4
5
6
7
8
9
10
11

INT INT MEM LDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STe CMP

BR

LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

1

8 8 8

7

5 2 5 5 5 5

7 7 7 7

8 8

Todd C. Mowry 21

Hardware parameters:
–  2 INT units: ADDs take 2 cycles; others take 1 cycle
–  1 MEM unit: stores (ST) take 4 cycles

Carnegie Mellon

Contrasting Forward vs. Backward
List Scheduling

•  backward scheduling clusters work near the end
•  backward is better in this case, but this is not always true

15745: List & Global Scheduling

Cycle
0
1
2
3
4
5
6
7
8
9
10
11

INT INT MEM
LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12

INT INT MEM
LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR ---- ----

Forward Backward

Todd C. Mowry 22

Carnegie Mellon

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:
–  schedule each block M times forward & backward
–  break any priority ties randomly

For real programs:

–  regular list scheduling works very well

For synthetic blocks:
–  RBF wins when “available parallelism” (AP) is ~2.5
–  for smaller AP, scheduling is too constrained
–  for larger AP, any decision tends to work well

15745: List & Global Scheduling Todd C. Mowry 23

Carnegie Mellon

List Scheduling Wrap-Up

•  The priority function can be arbitrarily sophisticated
–  e.g., filling branch delay slots in early RISC processors

•  List scheduling is widely used, and it works fairly well

•  It is limited, however, by basic block boundaries

15745: List & Global Scheduling Todd C. Mowry 24

Carnegie Mellon

Scheduling Roadmap

15745: List & Global Scheduling

…

List Scheduling:
•  within a basic block

y = c + d

x = a + b

Global Scheduling:
•  across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
•  across loop iterations

y = c + d

x = a + b

Todd C. Mowry 25

Carnegie Mellon

Introduction to Global Scheduling
Assume each clock can execute 2 operations of any kind.

Todd C. Mowry 15745: List & Global Scheduling 26

if (a==0) goto L

 e = d + d

 c = b

L:

LD R6 <- 0(R1)
nop
BEQZ R6, L

LD R8 <- 0(R4)
nop
ADD R8 <- R8,R8
ST 0(R5) <- R8

LD R7 <- 0(R2)
nop
ST 0(R3) <- R7

L:

B1

B2

B3

Carnegie Mellon

Result of Code Scheduling

Todd C. Mowry 15745: List & Global Scheduling 27

LD R6 <- 0(R1) ; LD R8 <- 0(R4)
LD R7 <- 0(R2)
ADD R8 <- R8,R8 ; BEQZ R6, L

ST 0(R5) <- R8 ST 0(R5) <- R8 ; ST 0(R3) <- R7 L:

B1

B3’ B3

Carnegie Mellon

Terminology

Control equivalence:
•  Two operations o1 and o2 are control equivalent

if o1 is executed if and only if o2 is executed.

Control dependence:
•  An op o2 is control dependent on op o1

if the execution of o2 depends on the outcome
of o1.

Speculation:
•  An operation o is speculatively executed if it

is executed before all the operations it
depends on (control-wise) have been executed.

•  Requirements:
–  does not raise an exception
–  satisfies data dependences

Todd C. Mowry 15745: List & Global Scheduling 28

Carnegie Mellon

Code Motions

Goal: Shorten execution time probabilistically

Moving instructions up:
•  Move instruction to a cut set (from entry)
•  Speculation: even when not anticipated.

Moving instructions down:
•  Move instruction to a cut set (from exit)
•  May execute extra instruction
•  Can duplicate code

Todd C. Mowry 15745: List & Global Scheduling 29

 src

 src

Carnegie Mellon

A Note on Data Dependences

Todd C. Mowry 15745: List & Global Scheduling 30

 a = 1 a = 0

Carnegie Mellon

General-Purpose Applications

•  Lots of data dependences

•  Key performance factor: memory latencies

•  Move memory fetches up
–  Speculative memory fetches can be expensive

•  Control-intensive: get execution profile
–  Static estimation

•  Innermost loops are frequently executed
–  back edges are likely to be taken

•  Edges that branch to exit and exception routines are not likely to be
taken

–  Dynamic profiling
•  Instrument code and measure using representative data

Todd C. Mowry 15745: List & Global Scheduling 31

Carnegie Mellon

A Basic Global Scheduling Algorithm

•  Schedule innermost loops first

•  Only upward code motion

•  No creation of copies

•  Only one level of speculation

Todd C. Mowry 15745: List & Global Scheduling 32

Carnegie Mellon

Program Representation

•  A region in a control flow graph is:
–  a set of basic blocks and all the edges connecting these blocks,
–  such that control from outside the region must enter through a

single entry block.

•  A procedure is represented as a hierarchy of regions
–  The whole control flow graph is a region
–  Each natural loop in the flow graph is a region
–  Natural loops are hierarchically nested

•  Schedule regions from inner to outer
–  treat inner loop as a black box unit

•  can schedule around it but not into it
–  ignore all the loop back edges à get an acyclic graph

Todd C. Mowry 15745: List & Global Scheduling 33

Carnegie Mellon

Algorithm
 Compute data dependences;
 For each region from inner to outer {
 For each basic block B in prioritized topological order {

 CandBlocks = ControlEquiv{B} ∪
 Dominated-Successors{ControlEquiv{B}};
 CandInsts = ready operations in CandBlocks;
 For (t = 0, 1, ... until all operations from B are scheduled) {
 For (n in CandInst in priority order) {
 if (n has no resource conflicts at time t) {
 S(n) = < B, t >
 Update resource commitments
 Update data dependences
 }
 }
 Update CandInsts;
 }}}

Priority functions: non-speculative before speculative

Todd C. Mowry 15745: List & Global Scheduling 34

Carnegie Mellon

Extensions

•  Prepass before scheduling: loop unrolling

•  Especially important to move operation up loop back edges

Todd C. Mowry 15745: List & Global Scheduling 35

…

Carnegie Mellon

Summary

•  Global scheduling

–  Legal code motions

–  Heuristics

Todd C. Mowry 15745: List & Global Scheduling 36

