
Lecture 18
List Scheduling

Reading: Chapter 10 3Reading: Chapter 10.3

Carnegie Mellon

Todd C. Mowry 15745: List Scheduling 1

Review: The Ideal Scheduling Outcome

• What prevents us from achieving this ideal?
Before After

Time 1 cycle

N cyclesN cycles

Carnegie Mellon
15745: List Scheduling Todd C. Mowry2

Review: Scheduling Constraints

• Hardware Resources
– finite set of FUs with instruction type, bandwidth, and latency

st i tsconstraints
– cache hierarchy also has many constraints

• Data Dependences
’t lt b f it i d d– can’t consume a result before it is produced

– ambiguous dependences create many challenges
• Control Dependences

i ti l t h d l f ll ibl th– impractical to schedule for all possible paths
– choosing an “expected” path may be difficult

• recovery costs can be non-trivial if you are wrong

Carnegie Mellon
15745: List Scheduling Todd C. Mowry3

Scheduling Roadmap

x = a + b x = a + b x = a + b…
y = c + d

x a + b

y = c + d

…
y = c + d

x a + b

List Scheduling: Global Scheduling: Software Pipelining:g
• within a basic block

g
• across basic blocks

f p g
• across loop iterations

Carnegie Mellon
15745: List Scheduling Todd C. Mowry4

List Scheduling

• The most common technique for scheduling instructions within a basic
block

We don’t need to worry about:
– control flow

x = a + b

We do need to worry about:
– data dependences

h d

…
y = c + d

x a + b

– hardware resources

• Even without control flow, the problem is still NP-hard

Carnegie Mellon
15745: List Scheduling Todd C. Mowry5

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:
– “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J.

Schielke and Devika Subramanian Rice University Department of Computer Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

Inputs: Output:
Data Precedence

Graph (DPG)
Machine

Parameters Scheduled Code

I0 I2 ---

Cycle

0I0 I2 I1 # of FUs:

I3
I10

I1
I8

I4
I6
I11

1
2
3

I0 I2

I6I4

3 8

I1

5

2 INT, 1 FP
Latencies:

add = 1 cycle, …
Pipelining: I10

I7

I9

I11
I5

3
4

I3 I8 I5

I9

Pipelining:
1 add/cycle, …

Carnegie Mellon
15745: List Scheduling Todd C. Mowry6

List Scheduling: The Basic Idea

• Maintain a list of instructions that are ready to execute
– data dependence constraints would be preserved
– machine resources are available

• Moving cycle-by-cycle through the schedule template:
– choose instructions from the list & schedule them
– update the list for the next cycle

Cycle

I2 I0 0
1
2

2

Carnegie Mellon
15745: List Scheduling Todd C. Mowry7

What Makes Life Interesting: Choice

Easy case:
– all ready instructions can be scheduled this cycle

I5 I1 I7

Interesting case:
– we need to pick a subset of the ready instructions

I5 I1 I2 I7I0 ???

• List scheduling makes choices based upon priorities
– assigning priorities correctly is a key challenge

Carnegie Mellon
15745: List Scheduling Todd C. Mowry8

Intuition Behind Priorities

• Intuitively, what should the priority correspond to?
• What factors are used to compute it?

– data dependences?
– machine parameters?

I0 I2

I6I4

I1 # of FUs:
2 INT, 1 FP

Latencies:

I3 I8 I5

I9

add = 1 cycle, …
Pipelining:

1 add/cycle, …
I9

Carnegie Mellon
15745: List Scheduling Todd C. Mowry9

Representing Data Dependences:
The Data Precedence Graph (DPG)The Data Precedence Graph (DPG)

• Two different kinds of edges:
DPGCode

I0: x = 1;
I1: y = x;
I2: x = 2;

I0

I1

true “edges”: E
(read-after-write) e = (I0,I1)x

x “ ti d s”: E’: ;
I3: z = x;

I2
e = (I2,I3)

“anti-edges”: E’
(write-after-read) e’ = (I1,I2)

• Why distinguish them?
– do they affect scheduling differently?

• What about output dependences?

I3
e (I2,I3)

Carnegie Mellon
15745: List Scheduling Todd C. Mowry10

Computing Priorities

• Let’s start with just true dependences (i.e. “edges” in DPG)
• Priority = latency-weighted depth in the DPG

I0 I2

64

I1

I6I4

I3 I8 I5

I9

Carnegie Mellon
15745: List Scheduling Todd C. Mowry11

Computing Priorities (Cont.)

• Now let’s also take anti-dependences into account
– i.e. anti-edges in the set E’

I0 I2 I1

I6I4

I3 I8 I5
e’e’

I9

Carnegie Mellon
15745: List Scheduling Todd C. Mowry12

List Scheduling Algorithm
cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

hil ((| d li t|+|i fli ht li t| > 0) && i l t i il bl) {while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {

if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;p y ;
if (op has an outgoing anti-edge)

add all targets of op’s anti-edges that are ready to ready-list;
}

}
l l 1cycle = cycle + 1;

for op = (all nodes in inflight-list)
if (op finishes at time cycle) {

remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands g p y p

available;
}

}
}

Carnegie Mellon
15745: List Scheduling Todd C. Mowry13

Example

I0: a = 1
I1: f = a + x
I2: b = 7

I0

Cycle

0
1I3: c = 9

I4: g = f + b
I5: d = 13
I6: e = 19;

I1

I8

I5

I6I4 I7

I3

I9

I2
1
2
3

I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1

I8I6I4 I7

I10

I9 4
5
6

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

I10: JMP L1
6

Carnegie Mellon

adds take cycles; all other nsts take cycle

15745: List Scheduling Todd C. Mowry14

Example

I0: a = 1
I1: f = a + x
I2: b = 7

I0

Cycle

0
1

I0 I2
I1 I3I3: c = 9

I4: g = f + b
I5: d = 13
I6: e = 19;

I1

I8

I5

I6I4 I7

I3

I9

I2
1
2
3

I1 I3
I5 I9
I4 I7

I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1

I8I6I4 I7

I10

I9 4
5
6

I8 I6
--- ---
I10

I10: JMP L1
60

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon
15745: List Scheduling Todd C. Mowry15

adds take cycles; all other nsts take cycle

What if We Break Ties Differently?

I0: a = 1
I1: f = a + x
I2: b = 7

I0

Cycle

0
1

6

I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;

I1

I8

I5

I6I4 I7

I3

I9

I2
1
2
32 3 3 2 3

444 5

I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1

I8I6I4 I7

I10

I9 4
5
6

1

I10: JMP L1
6

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon
15745: List Scheduling Todd C. Mowry16

adds take cycles; all other nsts take cycle

What if We Break Ties Differently?

I0: a = 1
I1: f = a + x
I2: b = 7

I0

Cycle

0
1

I0 I2
I1 I5I3: c = 9

I4: g = f + b
I5: d = 13
I6: e = 19;

I1

I8

I5

I6I4 I7

I3

I9

I2
1
2
3

I1 I5
I3 I8
I4 I7

I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1

I8I6I4 I7

I10

I9 4
5
6

I9 I6
I10

I10: JMP L1
6

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon
15745: List Scheduling Todd C. Mowry17

adds take cycles; all other nsts take cycle

Contrasting the Two Schedules

• Breaking ties arbitrarily may not be the best approach

I0

Cycle

0
1

I0 I2
I1 I3

Cycle

0
1

I0 I2
I1 I5444 5

6

I1

I8

I5

I6I4 I7

I3

I9

I2
1
2
3

I1 I3
I5 I9
I4 I7

1
2
3

I1 I5
I3 I8
I4 I72 3 3 2 3

444 5

I10

4
5
6

I8 I6
--- ---
I10

4
5

I9 I6
I101

60

Carnegie Mellon
15745: List Scheduling Todd C. Mowry18

Backward List Scheduling

Modify the algorithm as follows:
– reverse the direction of all edges in the DPG
– schedule the finish times of each operation

• start times must still be used to ensure FU availability

I t f h d li b k dImpact of scheduling backwards:
– clusters operations near the end (vs. the beginning)
– may be either better or worse than forward scheduling

Carnegie Mellon
15745: List Scheduling Todd C. Mowry19

Backward List Scheduling Example:
Let’s Schedule it Forward FirstLet s Schedule it Forward First

Cycle
0
1
2

INT INT MEMLDIa LSL LDIb LDIc LDId

ADD ADDb ADD ADDd ADDI

LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----

3
4
5
6

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc

d 7
8
9
10
11

STa STb STc STd STeCMP

BR

---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle

1 MEM it t (ST) t k 4 l

11
12

---- ---- ----
BR ---- ----

Carnegie Mellon

– 1 MEM unit: stores (ST) take 4 cycles

15745: List Scheduling Todd C. Mowry20

Now Let’s Try Scheduling BackwardNow Let s Try Scheduling Backward

888 8 8 Cycle
0
1
2

INT INT MEMLDIa LSL LDIb LDIc LDId

ADD ADDb ADD ADDd ADDI

LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----

888

7 7 7 7 7

8 8

3
4
5
6

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb52 5 5 5 5

7
8
9
10
11

STa STb STc STd STeCMP

BR

---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR

1
11BR ---- ----

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle

1 MEM it t (ST) t k 4 l
Carnegie Mellon

15745: List Scheduling Todd C. Mowry21

– 1 MEM unit: stores (ST) take 4 cycles

Contrasting Forward vs. Backward
List SchedulingList Scheduling

CycleINT INT MEMCycleINT INT MEM
Forward Backward

y
0
1
2
3

LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe

y
0
1
2
3

LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----

4
5
6
7
8

ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa

4
5
6
7
8

ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd

ST 8
9
10
11

---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

8
9
10
11
12

---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR

• backward scheduling clusters work near the end
• backward is better in this case, but this is not always true

12BR ---- ----

Carnegie Mellon

, y

15745: List Scheduling Todd C. Mowry22

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:
– schedule each block M times forward & backward
– break any priority ties randomly

For real programs:
– regular list scheduling works very well

For synthetic blocks:
– RBF wins when “available parallelism” (AP) is ~2.5RBF wins when available parallelism (AP) is 2.5
– for smaller AP, scheduling is too constrained
– for larger AP, any decision tends to work well

Carnegie Mellon
15745: List Scheduling Todd C. Mowry23

List Scheduling Wrap-Up

• The priority function can be arbitrarily sophisticated
– e.g., filling branch delay slots in early RISC processors

• List scheduling is widely used, and it works fairly well

• It is limited, however, by basic block boundaries

Carnegie Mellon
15745: List Scheduling Todd C. Mowry24

Scheduling Roadmap

x = a + b x = a + b x = a + b…
y = c + d

x a + b

y = c + d

…
y = c + d

x a + b

List Scheduling: Global Scheduling: Software Pipelining:g
• within a basic block

g
• across basic blocks

f p g
• across loop iterations

Carnegie Mellon
15745: List Scheduling Todd C. Mowry25

