Lecture 18
List Scheduling

Reading: Chapter 10.3

I Carnegie Melion [

Todd C. Mowry 15745: List Scheduling 1

e
Review: The Ideal Scheduling Outcome

e What prevents us from achieving this ideal?
Before After

— —
Time B T T) ¢ cyele

|

N cycles

I Carnegie Mellon [

15745: List Scheduling 2 Todd C. Mowry

e
Review: Scheduling Constraints

« Hardware Resources

— finite set of FUs with instruction type, bandwidth, and latency
constraints

— cache hierarchy also has many constraints
« Data Dependences

— can't consume a result before it is produced

— ambiguous dependences create many challenges
« Control Dependences

— impractical o schedule for all possible paths

— choosing an "expected” path may be difficult
 recovery costs can be non-trivial if you are wrong

I Carnegie Mellon [

15745: List Scheduling 3 Todd C. Mowry

e
Scheduling Roadmap

l

ll..

.
-
a
|
| |
|]
[]
n
|}
n
n
n
[]
[]
]
[]
L |
L]
L]
L
L4

*

X =a+b e_X=a+bE lx = a + b

N /\ o, v d

AN FETETN I :ag
___________ T

List Scheduling: Global Scheduling: Software Pipelining:
* withina basic block + agcross basic blocks * across loop iterations

I Carnegie Mellon [

15745: List Scheduling 4 Todd C. Mowry

e
List Scheduling

« The most common technique for scheduling instructions within a basic
block

We don't need to worry about: \/
— control flow
X =a+b
We do need to worry about: y =c+d
— data dependences
— hardware resources /\

« Even without control flow, the problem is still NP-hard

I Carnegie Mellon [

15745: List Scheduling 5 Todd C. Mowry

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:

— "An Experimental Evaluation of List Scheduling”, Keith D. Cooper, Philip J.
Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

Inputs: - Output
Data Precedence Machine i
Graph (DPG) Parameters i Scheduled Code Cycle
(10) (12) (1) |#ofFUs: |02] -] O
2 INT,1FP _ T1 I4 1
Latencies: |
@ @ add = 1 cycle, ... I3 I8 I6 2
@ @ @ Pipelining: [10| — | 11| 3
1 add/cycle, ... 17 | 19 | 15 4

Carnegie Mellon -

15745: List Scheduling 6 Todd C. Mowry

e
List Scheduling: The Basic Idea

e Maintain a list of instructions that are ready to execute
— data dependence constraints would be preserved
— machine resources are available
« Moving cycle-by-cycle through the schedule template:
— choose instructions from the list & schedule them
— update the list for the next cycle

SR
1

I Carnegie Mellon [

15745: List Scheduling 7 Todd C. Mowry

What Makes Life Interesting: Choice

Easy case:
— all ready instructions can be scheduled this cycle

B T -

Interesting case:
— we heed to pick a subset of the ready instructions

<15 I1 1012 I7 > ??? -
SN

 List scheduling makes choices based upon priorities
— assigning priorities correctly is a key challenge

Carnegie Mellon -

15745: List Scheduling 8 Todd C. Mowry

Intuition Behind Priorities

« Intuitively, what should the priority correspond to?
« What factors are used to compute it?

— data dependences?

— machine parameters?

1 @ @ # of FUs:
2 INT,1FP
@ @ Latencies:
add = 1 cycle, ...

(13) (18) (15) Pipelining:
1 add/cycle, ...
19

Carnegie Mellon -

15745: List Scheduling 9 Todd C. Mowry

Representing Data Dependences:
The Data Precedence Graph (DPG)

« Two different kinds of edges:

Code ore
10: x. = 1: true "edges": E
11- y}.x- (read—af’rer-wri're)?‘ e = (I0,I1)
I2: X . \\an_'_l'_edgesll: E' @

- \—A - — L
132 2 =7x; (write-after-read) = (I112)
e=(I21I3)

« Why distinguish them?
— do they affect scheduling differently?
« What about output dependences?

Carnegie Mellon -

Todd C. Mowry

15745: List Scheduling 10

Computing Priorities

« Let's start with just true dependences (i.e. "edges” in DPG)
* Priority = /atency-weighted depth in the DPG

[
priority(z) = ma’x(vleleaves(DPG)vapaths(:U,...,l) Z latency(p;))

0 @ @
ORI
) @® ©
©
carnegie Mellon [l

15745: List Scheduling 11 Todd C. Mowry

Computing Priorities (Cont.)

* Now let's also take anti-dependences into account
— i.e. anti-edges in the set E'

latency(x) if z is a leaf
priority(z) = { max(latency(x) + maw(m,y)eE(priority(y)),
MaT (g .\ F/ (priority(y))) otherwise.

® @ @
. @®
® ® @
®
carnegie Melion [l

15745: List Scheduling 12 Todd C. Mowry

e
List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};
while ((]Jready-list]+]inflight-list] > 0) && an issue slot is available) {
for op = (all nodes i1n ready-list In descending priority order) {
iIT (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
1T (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list;
by
+
cycle = cycle + 1;
for op = (all nodes iIn inflight-list)
iT (op finishes at time cycle) {
remove op from inflight-list;

check nodes waiting for op & add to ready-list 1f all operands
available;

+
}

I Carnegie Mellon [

15745: List Scheduling 13 Todd C. Mowry

-]
Example

10: a =1 Cycle
11: F =

25 b-7 © X
13: ¢ =9

u:g=t+b @@ @© 2
1I5: d = 13 3
16: = 19;

oo @OOBE 4
I8: J = d . 5
I9:Jz:—1+y @ 6
110: JMP L1

« 2 identical fully-pipelined FUs
« adds take 2 cycles; all other insts take 1 cycle

I Carnegie Mellon [

15745: List Scheduling 14 Todd C. Mowry

Example
10: a =1 Cycle
I11: f=a + X 0
12: b =7 @ 10 L 1
13: ¢c =9 I1 I3
14: g=Ff + b @@@@ I5 I9 2
o c- 0 @OO®® (ot .
17: h =+ c Is | I6 | 4
I8 J =d + vy » — — 5
10: z = -1 @ 110 6
110: JMP L1

« 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

I Carnegie Mellon [

15745: List Scheduling 15 Todd C. Mowry

What if We Break Ties Differently?

10: a=1 M
I11: f=a + x 0
12: b =7 1
13: ¢ =9

14: g=T + b 2
15 d = 13 3
16: e = 19;

17: h=f + ¢ 4
I8 J =d+vy 5
10: z = -1 6
110: JMP L1

« 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List Scheduling 16 Todd C. Mowry

What if We Break Ties Differently?

1I0: a =1 Cycle
I11: f=a + x @ 10 I2 0
12: b =7

1I3: ¢ =9 Ml
ig=trn (@@ © Q/Q 2
el 4 S 17 | 3
oo @OOBO (@t .
18- j = d . T10 5
I9:Jz:—1+y @ 6
110: JMP L1

« 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List Scheduling 17 Todd C. Mowry

Contrasting the Two Schedules

« Breaking ties arbitrarily may not be the best approach

Cycle Cycle

I0 [12 | © I0 [12 | ©
1 | 13 | 1 3| !
I5 | I9 | 2 @ | @D | 2
4 | 17 | 3 4 £ 17 | 3
I8 | I6 | 4 I6 | 4
— | -] 5 I10 5
I10 6

Carnegie Mellon -

15745: List Scheduling 18 Todd C. Mowry

e
Backward List Scheduling

Modify the algorithm as follows:
— reverse the direction of all edges in the DPG

— schedule the finish times of each operation
 start times must still be used to ensure FU availability

Impact of scheduling backwards:
— clusters operations near the end (vs. the beginning)
— may be either better or worse than forward scheduling

I Carnegie Mellon [

15745: List Scheduling 19 Todd C. Mowry

Backward List Scheduling Example:
Let's Schedule it Forward First

Hardware parameters:

— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles

15745: List Scheduling

20

@ @ INT INT MEM Cycle
[5Ia [L3C | —] O
I5Tb [IbIc | — | !
IDId | ADDa | —- 2
ADDb (ADDg (ADDJ @ ADDb | ADDc | — 3
ADDd | ADDI| STa | 4
CMP | — | 575 | 5
- [— | 51c | 6
[[std]| 7
—— |- | ste | 8
. . - | 9
— [— [—] 10
[— [— | 1
BR | -— | — | 12

Carnegie Mellon -

Todd C. Mowry

Now Let's Try Scheduling Backward

INT INT MEM Cycle
LDIa | ---- --—- 0
ADDL | LSL ---- 1
ADDd | [DIc --—- 2
ADDc | LDId STe 3
ADDD | LDIa STd 4
ADDa | ---- STc 5
— — STb 6
=== ---- STa 7
- - - 8
- - - 9
CMP — i 10
BR — —— 11

Hardware parameters:

— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles

Carnegie Mellon -

Todd C. Mowry

15745: List Scheduling 21

Contrasting Forward vs. Backward
List Scheduling

Forward Backward

INT INT MEM Cycle INT INT MEM Cycle
[DIa [L3C —— 0 [Dla | — ——] 0
DIb [LDIc | — | 1 ADDT [L3C /1 1
'LDId | ADDa | ---- 2 ADDd | LDIc — 2
ADDDb | ADDc | — | 3 ADDc [LDId | 57e | 3
ADDd | ADDL | STa | 4 ADDD | LDIa | 57d | 4
CMP | — STh | 5 ADDa | —-- STc | 5
STc | 6 STb | 6
STd | 7 STa | 7
STe | 8 - | 8
_ | 9 —_ | 9
| 10 CMP | — —_ | 10
| 1 BR | 11
BR | 12

« backward scheduling clusters work near the end
« backward is better in this case, but this is not always true

I Carnegie Mellon [

15745: List Scheduling 22 Todd C. Mowry

]
Evaluation of List Scheduling

Cooper et al propose "RBF" scheduling:
— schedule each block M times forward & backward
— break any priority ties randomly

For real programs:
— regular list scheduling works very well

For synthetic blocks:

— RBF wins when "available parallelism” (AP) is ~2.5
— for smaller AP, scheduling is too constrained
— for larger AP, any decision tends to work well

I Carnegie Mellon [

15745: List Scheduling 23 Todd C. Mowry

T
List Scheduling Wrap-Up

« The priority function can be arbitrarily sophisticated
— e.g., filling branch delay slots in early RISC processors

« List scheduling is widely used, and it works fairly well

« Tt is limited, however, by basic block boundaries

I Carnegie Mellon [

15745: List Scheduling 24 Todd C. Mowry

e
Scheduling Roadmap

l

ll..

.
-
a
|
| |
|]
[]
n
|}
n
n
n
[]
[]
]
[]
L |
L]
L]
L
L4

*

X =a+b e_X=a+bE lx = a + b

N /\ o, v d

AN FETETN I :ag
___________ T

List Scheduling: Global Scheduling: Software Pipelining:
» within a basic block + gcross basic blocks * across loop iterations

I Carnegie Mellon [

15745: List Scheduling 25 Todd C. Mowry

