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I. Example of DoAll Loops 
•  Machine: 

–  Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware 
loop op and auto-incrementing addressing mode. 

•  Source code: 
     For i = 1 to n 
        D[i] = A[i] * B[i]+ c      

•  Code for one iteration: 
    1. LD  R5,0(R1++) 
    2. LD  R6,0(R2++) 
    3. MUL R7,R5,R6 
   4.    
   5. ADD R8,R7,R4 

    6.  
    7. ST 0(R3++),R8 

•  Little or no parallelism within basic block 
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Loop Unrolling 
 1.L: LD 
 2.   LD 
 3.          LD 
 4.   MUL    LD 
 5.          MUL    LD 
 6.   ADD           LD 
 7.          ADD           LD 
 8.   ST            MUL    LD  
 9.                        MUL     
10.          ST     ADD     
11.                          ADD     
12.                   ST     
13.                        ST     BL (L) 
 
•  Let  u be the degree of unrolling: 

–  Length of u iterations = 7+2(u-1) 
–  Execution time per source iteration = (7+2(u-1)) / u =  2 + 5/u 
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Software Pipelined Code 
 1. LD 
 2. LD 
 3. MUL    LD 
 4.        LD 
 5.        MUL    LD 
 6. ADD           LD 
 7.               MUL    LD 
 8. ST     ADD           LD  
 9.                      MUL    LD    
10.        ST     ADD           LD  
11.                               MUL 
12.                 ST     ADD 
13.                       
14.                        ST     ADD 
15. 
16.                             ST 
 

•  Unlike unrolling, software pipelining can give optimal result. 
•  Locally compacted code may not be globally optimal 
•  DOALL: Can fill arbitrarily long pipelines with infinitely many iterations 
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Example of DoAcross Loop 

Loop: 
    Sum = Sum + A[i]; 
    B[i] = A[i] * c; 
 
Software Pipelined Code 
 1. LD 
 2. MUL 
3. ADD   LD 
4. ST    MUL 

 5.       ADD 
 6.       ST 

 

Doacross loops 
•  Recurrences can be parallelized  
•  Harder to fully utilize hardware with large degrees of parallelism 
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II. Problem Formulation 

Goals: 
–  maximize throughput 
–  small code size 

 
Find:  

–  an identical relative schedule S(n) 
for every iteration 

–  a constant initiation interval (T) 

   such that 
–  the initiation interval is minimized   

Complexity: 
–  NP-complete in general 
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Impact of Resources on Bound on Initiation Interval 

•  Example: Resource usage of 1 iteration 
–  (assume machine can execute 1 LD, 1 ST, 2 ALU per clock) 
 
           LD, LD, MUL, ADD, ST 

•  Lower bound on initiation interval? 

for all resource i,  
   number of units required by one iteration: ni 
  number of units in system: Ri 
 

Lower bound due to resource constraints: maxi ni/Ri 
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Scheduling Constraints: Resources 

•  RT: resource reservation table for single iteration 
•  RTs: modulo resource reservation table 

RTs[i] = Σt|(t mod T = i) RT[t] 
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Scheduling Constraints: Precedence 
   for (i = 0; i < n; i++) { 
       *(p++) = *(q++) + c 
   } 

 
 

•  Minimum initiation interval? 
•  S(n): schedule for n with respect to the beginning of the schedule  
•  Label edges with < δ, d >  

•  δ = iteration difference, d = delay 

          δ x T + S(n2) – S(n1) ≥  d 
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Scheduling Constraints: Precedence 
   for (i = 2; i < n; i++) { 
       A[i] = A[i-2] + 1; 
   } 

 
 

•  Minimum initiation interval? 
•  S(n): schedule for n with respect to the beginning of the schedule  
•  Label edges with < δ, d >  

•  δ = iteration difference, d = delay 

          δ x T + S(n2) – S(n1) ≥  d 
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Minimum Initiation Interval 

 
 
For all cycles c,  
         max c     CycleLength(c) / IterationDifference (c) 
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III. Example: An Acyclic Graph 
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Algorithm for Acyclic Graphs 

•  Find lower bound of initiation interval: T0 
–  based on resource constraints 

•  For T = T0, T0+1, ... until all nodes are scheduled 
–  For each node n in topological order 

•  s0 = earliest n can be scheduled 
•  for each s = s0 , s0 +1, ..., s0 +T-1 
•  if NodeScheduled(n, s) break;  
•  if n cannot be scheduled break;  

 
•  NodeScheduled(n, s)  

–  Check resources of n at s in modulo resource reservation table 

•  Can always meet the lower bound if:  
–  every operation uses only 1 resource, and 
–  no cyclic dependences in the loop 
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Cyclic Graphs 

•  No such thing as “topological order” 
•  b à c; cà b  

S(c) – S(b) ≥ 1 
T + S(b) – S(c) ≥ 2 

•  Scheduling b constrains c, and vice versa 
S(b) + 1 ≤ S(c) ≤ S(b) – 2 + T 
S(c) – T + 2 ≤ S(b) ≤ S(c) – 1 
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Strongly Connected Components 

•  A strongly connected component (SCC) 
–  Set of nodes such that every node can reach every other node 

•  Every node constrains all others from above and below 
–  Finds longest paths between every pair of nodes 
–  As each node scheduled,  

find lower and upper bounds of all other nodes in SCC 
•  SCCs are hard to schedule 

–  Critical cycle: no slack 
•  Backtrack starting with the first node in SCC  

–  increases T, increases slack 
•  Edges between SCCs are acyclic 

–  Acyclic graph: every node is a separate SCC 
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Algorithm Design 

•  Find lower bound of initiation interval: T0 
–  based on resource constraints and precedence constraints 

•  For T = T0, T0+1, ... , until all nodes are scheduled 
–  E*= longest path between each pair 
–  For each SCC c in topological order 

•  s0 = Earliest c can be scheduled 
•  For each s = s0 , s0 +1, ..., s0 +T-1 
•  if SCCScheduled(c, s) break;  
•  If c cannot be scheduled return false;  

–  return true;  
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Scheduling a Strongly Connected Component (SCC) 

•  SCCScheduled(c, s) 
–  Schedule first node at s, return false if fails 
–  For each remaining node n in c  

•  sl = lower bound on n based on E* 
•  su = upper bound on n based on E* 
•  For each s = sl , sl +1, min (sl +T-1, su) 
•  if NodeScheduled(n, s) break;  
•  If n cannot be scheduled return false;  

–  return true; 
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Modulo Variable Expansion 
•  Software-pipelined code 
 
  1. LD 
  2. LD 
  3. MUL    LD 
  4.        LD  
  5.        MUL    LD 
  6. ADD           LD 
L:7.               MUL    LD 
  8. ST     ADD           LD     BL L 
  9.                      MUL    LD    
 10.        ST     ADD           LD   
 11.                             MUL 
 12.               ST      ADD 
 13.                       
 14.                      ST     ADD 
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1. LD  R5,0(R1++) 
2. LD  R6,0(R2++) 
3. MUL R7,R5,R6 
4. 
5. ADD R8,R7,R4 
6. 
7. ST 0(R3++),R8 
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Modulo Variable Expansion 
 1.  LD R5,0(R1++) 
 2.  LD R6,0(R1++) 
 3.  LD R5,0(R1++)  MUL R7,R5,R6   
 4.  LD R6,0(R1++)        
5.  LD R5,0(R1++)  MUL R17,R5,R6     

 6.  LD R6,0(R1++)  ADD R8,R7,R7      
L  7.  LD R5,0(R1++)  MUL R7,R5,R6    
 8.  LD R6,0(R1++)  ADD R8,R17,R17  ST 0(R3++),R8  
 9.  LD R5,0(R1++)  MUL R17,R5,R6      
 10.  LD R6,0(R1++)  ADD R8,R7,R7   ST 0(R3++),R8   BL L 
 11.    MUL R7,R5,R6    
 12.    ADD R8,R17,R17  ST 0(R3++),R8 
 13.       
 14.    ADD R8,R7,R7   ST 0(R3++),R8 
 15.        
 16.       ST 0(R3++),R8 
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Algorithm 

•  Normally, every iteration uses the same set of registers  
–  introduces artificial anti-dependences for software pipelining 

•  Modulo variable expansion algorithm 
–  schedule each iteration ignoring artificial constraints on registers 
–  calculate life times of registers 
–  degree of unrolling = maxr (lifetimer /T) 
–  unroll the steady state of software pipelined loop to use different 

registers  
•  Code generation 

–  generate one pipelined loop with only one exit  
(at beginning of steady state) 

–  generate one unpipelined loop to handle the rest 
–  code generation is the messiest part of the algorithm! 
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Conclusions 

•  Numerical Code 
–  Software pipelining is useful for machines with a lot of pipelining 

and instruction level parallelism 
–  Compact code 
–  Limits to parallelism: dependences, critical resource 
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