
Carnegie Mellon

Lecture 19
Software Pipelining

I.  Introduction

II.  Problem Formulation

III.  Algorithm

Todd C. Mowry 15-745: Software Pipelining 1

Carnegie Mellon

I. Example of DoAll Loops
•  Machine:

–  Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware
loop op and auto-incrementing addressing mode.

•  Source code:
 For i = 1 to n
 D[i] = A[i] * B[i]+ c

•  Code for one iteration:
 1. LD R5,0(R1++)
 2. LD R6,0(R2++)
 3. MUL R7,R5,R6
 4.
 5. ADD R8,R7,R4

 6.
 7. ST 0(R3++),R8

•  Little or no parallelism within basic block

Todd C. Mowry 15-745: Software Pipelining 2

Carnegie Mellon

Loop Unrolling
 1.L: LD
 2. LD
 3. LD
 4. MUL LD
 5. MUL LD
 6. ADD LD
 7. ADD LD
 8. ST MUL LD
 9. MUL
10. ST ADD
11.   ADD
12.   ST
13. ST BL (L)

•  Let u be the degree of unrolling:

–  Length of u iterations = 7+2(u-1)
–  Execution time per source iteration = (7+2(u-1)) / u = 2 + 5/u

Todd C. Mowry 15-745: Software Pipelining 3

Schedule after unrolling by a factor of 4

Carnegie Mellon

Software Pipelined Code
 1. LD
 2. LD
 3. MUL LD
 4. LD
 5. MUL LD
 6. ADD LD
 7. MUL LD
 8. ST ADD LD
 9. MUL LD
10. ST ADD LD
11.   MUL
12.   ST ADD
13.
14.   ST ADD
15.
16. ST

•  Unlike unrolling, software pipelining can give optimal result.
•  Locally compacted code may not be globally optimal
•  DOALL: Can fill arbitrarily long pipelines with infinitely many iterations

Todd C. Mowry 15-745: Software Pipelining 4

…

Carnegie Mellon

Example of DoAcross Loop

Loop:
 Sum = Sum + A[i];
 B[i] = A[i] * c;

Software Pipelined Code
 1. LD
 2. MUL
3. ADD LD
4. ST MUL

 5. ADD
 6. ST

Doacross loops
•  Recurrences can be parallelized
•  Harder to fully utilize hardware with large degrees of parallelism

Todd C. Mowry 15-745: Software Pipelining 5

1.  LD
2.  MUL
3.  ADD
4.  ST

Carnegie Mellon

II. Problem Formulation

Goals:
–  maximize throughput
–  small code size

Find:

–  an identical relative schedule S(n)
for every iteration

–  a constant initiation interval (T)

 such that
–  the initiation interval is minimized

Complexity:
–  NP-complete in general

Todd C. Mowry 15-745: Software Pipelining 6

S
0 LD
1 MUL
2 ADD LD
3 ST MUL
 ADD
 ST	

T=2

Carnegie Mellon

Impact of Resources on Bound on Initiation Interval

•  Example: Resource usage of 1 iteration
–  (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)

 LD, LD, MUL, ADD, ST

•  Lower bound on initiation interval?

for all resource i,
 number of units required by one iteration: ni
 number of units in system: Ri

Lower bound due to resource constraints: maxi ni/Ri

Todd C. Mowry 15-745: Software Pipelining 7

Carnegie Mellon

Scheduling Constraints: Resources

•  RT: resource reservation table for single iteration
•  RTs: modulo resource reservation table

RTs[i] = Σt|(t mod T = i) RT[t]

Todd C. Mowry 15-745: Software Pipelining 8

LD Alu ST

LD Alu ST

LD Alu ST

LD Alu ST

Iteration 1

Iteration 2

Iteration 3

Iteration 4

T=2
Ti

m
e

LD Alu ST
Steady State

T=2

Carnegie Mellon

Scheduling Constraints: Precedence
 for (i = 0; i < n; i++) {
 *(p++) = *(q++) + c
 }

•  Minimum initiation interval?
•  S(n): schedule for n with respect to the beginning of the schedule
•  Label edges with < δ, d >

•  δ = iteration difference, d = delay

 δ x T + S(n2) – S(n1) ≥ d

Todd C. Mowry 15-745: Software Pipelining 9

Carnegie Mellon

Scheduling Constraints: Precedence
 for (i = 2; i < n; i++) {
 A[i] = A[i-2] + 1;
 }

•  Minimum initiation interval?
•  S(n): schedule for n with respect to the beginning of the schedule
•  Label edges with < δ, d >

•  δ = iteration difference, d = delay

 δ x T + S(n2) – S(n1) ≥ d

Todd C. Mowry 15-745: Software Pipelining 10

Carnegie Mellon

Minimum Initiation Interval

For all cycles c,
 max c CycleLength(c) / IterationDifference (c)

Todd C. Mowry 15-745: Software Pipelining 11

Carnegie Mellon

III. Example: An Acyclic Graph

Todd C. Mowry 15-745: Software Pipelining 12

Carnegie Mellon

Algorithm for Acyclic Graphs

•  Find lower bound of initiation interval: T0
–  based on resource constraints

•  For T = T0, T0+1, ... until all nodes are scheduled
–  For each node n in topological order

•  s0 = earliest n can be scheduled
•  for each s = s0 , s0 +1, ..., s0 +T-1
•  if NodeScheduled(n, s) break;
•  if n cannot be scheduled break;

•  NodeScheduled(n, s)

–  Check resources of n at s in modulo resource reservation table

•  Can always meet the lower bound if:
–  every operation uses only 1 resource, and
–  no cyclic dependences in the loop

Todd C. Mowry 15-745: Software Pipelining 13

Carnegie Mellon

Cyclic Graphs

•  No such thing as “topological order”
•  b à c; cà b

S(c) – S(b) ≥ 1
T + S(b) – S(c) ≥ 2

•  Scheduling b constrains c, and vice versa
S(b) + 1 ≤ S(c) ≤ S(b) – 2 + T
S(c) – T + 2 ≤ S(b) ≤ S(c) – 1

Todd C. Mowry 15-745: Software Pipelining 14

Carnegie Mellon

Strongly Connected Components

•  A strongly connected component (SCC)
–  Set of nodes such that every node can reach every other node

•  Every node constrains all others from above and below
–  Finds longest paths between every pair of nodes
–  As each node scheduled,

find lower and upper bounds of all other nodes in SCC
•  SCCs are hard to schedule

–  Critical cycle: no slack
•  Backtrack starting with the first node in SCC

–  increases T, increases slack
•  Edges between SCCs are acyclic

–  Acyclic graph: every node is a separate SCC

Todd C. Mowry 15-745: Software Pipelining 15

Carnegie Mellon

Algorithm Design

•  Find lower bound of initiation interval: T0
–  based on resource constraints and precedence constraints

•  For T = T0, T0+1, ... , until all nodes are scheduled
–  E*= longest path between each pair
–  For each SCC c in topological order

•  s0 = Earliest c can be scheduled
•  For each s = s0 , s0 +1, ..., s0 +T-1
•  if SCCScheduled(c, s) break;
•  If c cannot be scheduled return false;

–  return true;

Todd C. Mowry 15-745: Software Pipelining 16

Carnegie Mellon

Scheduling a Strongly Connected Component (SCC)

•  SCCScheduled(c, s)
–  Schedule first node at s, return false if fails
–  For each remaining node n in c

•  sl = lower bound on n based on E*
•  su = upper bound on n based on E*
•  For each s = sl , sl +1, min (sl +T-1, su)
•  if NodeScheduled(n, s) break;
•  If n cannot be scheduled return false;

–  return true;

Todd C. Mowry 15-745: Software Pipelining 17

Carnegie Mellon

Modulo Variable Expansion
•  Software-pipelined code

 1. LD
 2. LD
 3. MUL LD
 4. LD
 5. MUL LD
 6. ADD LD
L:7. MUL LD
 8. ST ADD LD BL L
 9. MUL LD
 10. ST ADD LD
 11. MUL
 12. ST ADD
 13.
 14. ST ADD

Todd C. Mowry 15-745: Software Pipelining 18

1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. MUL R7,R5,R6
4.
5. ADD R8,R7,R4
6.
7. ST 0(R3++),R8
	

Carnegie Mellon

Modulo Variable Expansion
 1. LD R5,0(R1++)
 2. LD R6,0(R1++)
 3. LD R5,0(R1++) MUL R7,R5,R6
 4. LD R6,0(R1++)
5. LD R5,0(R1++) MUL R17,R5,R6

 6. LD R6,0(R1++) ADD R8,R7,R7
L 7. LD R5,0(R1++) MUL R7,R5,R6
 8. LD R6,0(R1++) ADD R8,R17,R17 ST 0(R3++),R8
 9. LD R5,0(R1++) MUL R17,R5,R6
 10. LD R6,0(R1++) ADD R8,R7,R7 ST 0(R3++),R8 BL L
 11. MUL R7,R5,R6
 12. ADD R8,R17,R17 ST 0(R3++),R8
 13.
 14. ADD R8,R7,R7 ST 0(R3++),R8
 15.
 16. ST 0(R3++),R8

Todd C. Mowry 15-745: Software Pipelining 19

Carnegie Mellon

Algorithm

•  Normally, every iteration uses the same set of registers
–  introduces artificial anti-dependences for software pipelining

•  Modulo variable expansion algorithm
–  schedule each iteration ignoring artificial constraints on registers
–  calculate life times of registers
–  degree of unrolling = maxr (lifetimer /T)
–  unroll the steady state of software pipelined loop to use different

registers
•  Code generation

–  generate one pipelined loop with only one exit
(at beginning of steady state)

–  generate one unpipelined loop to handle the rest
–  code generation is the messiest part of the algorithm!

Todd C. Mowry 15-745: Software Pipelining 20

Carnegie Mellon

Conclusions

•  Numerical Code
–  Software pipelining is useful for machines with a lot of pipelining

and instruction level parallelism
–  Compact code
–  Limits to parallelism: dependences, critical resource

Todd C. Mowry 15-745: Software Pipelining 21

