
1

Lecture 2

Local Optimizationsp

I. Basic blocks/Flow graphs

II. Abstraction 1: DAG

III. Abstraction 2: Value numbering

Carnegie Mellon

Todd C. Mowry 15-745: Local Optimizations 1

I. Basic Blocks & Flow Graphs

• What is
• a basic block?
• a flow graph?

How do we restructure a sequential list of instructions into a flow • How do we restructure a sequential list of instructions into a flow
graph of basic blocks?

• ALSU pp. 529-531
• Reachability of basic blocks

if x {
…
return;

bfls r1, L1
…
ret
jmp L2

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 2

} else {
…

}

jmp L2
L1: …

L2: …

2

II. Local Optimizations

• Common subexpression elimination
– array expressions
– field access in records
– access to parameters

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 3

Graph Abstractions

• Example 1: an expression
a+a*(b-c)+(b-c)*d

Carnegie Mellon

• ALSU pp. 359-362

Todd C. Mowry15-745: Local Optimizations 4

3

How well do DAGs hold up across statements?

• Example 2
a = b+c;

b = a-d;

c = b+c;

d = a-d;

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 5

Critique of DAGs

• Cause of problems
– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time

Carnegie Mellon

– loses appeal of abstraction

Todd C. Mowry15-745: Local Optimizations 6

4

III. Value Number: Another Abstraction

• John Cocke & Jack Schwartz in unpublished book: “Programming
Languages and their Compilers”, (1970) (ALSU pp. 360-362)

• More explicit with respect to VALUES, and TIME
(dynamic)(static)

Variables Values
(dynamic)(static)

var2value
(current)

Carnegie Mellon

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value
– used to determine the value number of current expression

r1 + r2 => var2value(r1)+var2value(r2)

Todd C. Mowry15-745: Local Optimizations 7

Algorithm

Data structure:
VALUES = Table of

expression
var (temporary holding variable)

For each instruction (dst = op src1 src2) in execution order

IF [OP var2value(src1) var2value(src2)] is in VALUES
v = the index of expression
Replace instruction with CPY dst = VALUES[v].var

ELSE
Add

expression = [OP var2value(src1) var2value(src2)]

Carnegie Mellon

var = dst
to VALUES
v = index of new entry

set_var2value (dst, v)

Todd C. Mowry15-745: Local Optimizations 8

5

More Details

• What are the initial values of the variables?
– values at beginning of the basic block

P ibl i l t ti• Possible implementations:
– Initialization: create “initial values” for all variables
– Or dynamically create them as they are used

• Implementation of VALUES and var2value: hash tables

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 9

Example

Assign: a->r1,b->r2,c->r3,d->r4
a = b+c; ADD t1 = r2,r3

CPY r1 = t1
b = a-d; SUB t2 = r1,r4b a d; SUB t2 r1,r4

CPY r2 = t2
c = b+c; ADD t3 = r2,r3

CPY r3 = t3
d = a-d; SUB t4 = r1,r4

CPY r4 = t4

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 10

6

Conclusions

• Comparisons of two abstractions
– DAGs
– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES
– TIME

• Interpretation of instructions in order of execution
• Keep dynamic state information

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 11

Question

• How do you extend value numbering to constant folding?

a = 1

b = 2

c = a+b

Carnegie Mellon

Todd C. Mowry15-745: Local Optimizations 12

