Lectures 25-26
Memory Hierarchy Optimizations &
Locality Analysis

N C-rregi veton [

CS745: Memory Hierarchy Optimizations Todd C. Mowry

e
Caches: A Quick Review

« How do they work?
* Why do we care about them?
« What are typical configurations today?

* What are some important cache parameters that will affect
performance?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -2- Todd C. Mowry

Optimizing Cache Performance

« Things to enhance:
- temporal locality
- spatial locality

« Things to minimize:
- conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -3- Todd C. Mowry

Two Things We Can Manipulate

 Time:
When is an object accessed?

* Space:
Where does an object exist in the address space?

How do we exploit these two levers?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -4- Todd C. Mowry

Time: Reordering Computation

* What makes it difficult to know when an object is accessed?

* How can we predict a better time to access it?
- What information is needed?

« How do we know that this would be safe?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -5- Todd C. Mowry

Space: Changing Data Layout

* What do we know about an object's location?

scalars, structures, pointer-based data structures, arrays,
code, etc.

« How can we tell what a better layout would be?
how many can we create?

* To what extent can we safely alter the layout?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -6- Todd C. Mowry

Types of Objects to Consider

e Scalars
e Structures & Pointers
* Arrays

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -7- Todd C. Mowry

Scalars
* Locals int x;
double vy;
foo(int a
* Globals _() "
int i;
* Procedure arguments X = a*i-
» Is cache performance a concern here? }

e TIf so, what can be done?

R C-rregi veton [

CS745: Memory Hierarchy Optimizations -8- Todd C. Mowry

Structures and Pointers

struct {

« What can we do here? int count;
. within a node double velocity;

double I1nertia;
* across nodes]
struct node *neighbors|[N];

} node;

* What limits the compiler’'s ability to optimize here?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -9- Todd C. Mowry

Arrays
double A[NT[N]., BINIIN1:

¥or 1 = 0 to N-1
for j = 0 to N-1
ALY1DO] = sO1L];

 usually accessed within loops nests
* makes it easy to understand "time"

* what we know about array element addresses:
- start of array?
* relative position within array

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -10- Todd C. Mowry

Handy Representation: "Tteration Space”

for 1 = 0 to N-1 O0000000O00O0O0
for j = 0 to N-1 O000000000O0O0
A[i1[T1 = BLi1[i1; O000000O0O0O0O0O0

 each position represents an iteration

R C-rregi veton [

CS745: Memory Hierarchy Optimizations -11- Todd C. Mowry

Visitation Order in Tteration Space

==X 0O 00O

Cal o m e o m ottt o md

for 1 = 0 to N-1 Cal T m e o mom T o md
for j = 0 to N-1 O===0LC0C 00O
A[i][j] — BU][i]; Cal o m e o m ottt e md
==X 0O 00O

Cal o m e o m ot T o md

Cal o m e o m ottt e md

Cat T m e o m ot T o)

Camomomomo o me me s T oD

* Note: iteration space # data space

Y C-rregi veton [

CS5745: Memory Hierarchy Optimizations -12- Todd C. Mowry

When Do Cache Misses Occur?

O to N-1

for
for

= 0 to N-1
AL101 = BO1Li]:

]

aa]l

<

00000000 |

O0O0O000O0O0
O0O0O0O00O0O0
O00O000O0O0
O00O000O0O0
O00O000O0O0
O0O0O0000O0
00000000

00000000

O0O0O0000O0
O0O0O0O00O0O0
O0O0O000O0O0
O00000O0O0
O00O0000O0
O0O0O0000O0
00000000

Carnegie Mellon -

Todd C. Mowry

-13-

CS745: Memory Hierarchy Optimizations

When Do Cache Misses Occur?

for 1 = 0 to N-1
for j = 0 to N-1
ALT+J]1[0] = 1*];

00000000
0O000000O0
0O000000O0
0O000000O0
0O00O0000O0
0O000000O0
0O00O0O000O0

©O000O000O0

R C-rregi veton [

CS745: Memory Hierarchy Optimizations -14- Todd C. Mowry

Optimizing the Cache Behavior of Array Accesses

« We need to answer the following questions:
- when do cache misses occur?
- use "locality analysis”

can we change the order of the iterations (or possibly data
layout) to produce better behavior?

- evaluate the cost of various alternatives
does the new ordering/layout still produce correct results?
- use "dependence analysis"

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -15- Todd C. Mowry

Examples of Loop Transformations

* Loop Interchange
« Cache Blocking

« Skewing

« Loop Reversal

(we will briefly discuss the first two)

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -16- Todd C. Mowry

Loop Interchange

for 1 = 0 to N-1 for J = 0 to N-1

for Jj = 0 to N—><>for 1 = 0 to N-1
AJ1L] = 1*); AJ1L] = 1*);

'eo0000000 Jeoeoeoe@o |[OHi

00000000 @0@0@O00®0 | ® Miss
coo0o0o0o000 "> 0000000
00000000 0000000
00000000 0000000
00000000 0000000
00000000 0000000
00000000 0000000
j i

« (assuming N is large relative to cache size)

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -17- Todd C. Mowry

Cache Blocking (aka "Tiling")

— fTor JJ = 0 to N-1 by B

for 1 = 0 to N-1 for 1 O to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
fCALIL. AL TCALTL.ADOD:
Al1] A1l Al1] A1l

100000000 100000000 :(1l0000OOOOO 1000OOOOOO

00000000
00000000

00000000
00000000

00000000
00000000

00000000
00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

J J J J

now we can exploit temporal locality

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -18- Todd C. Mowry

ITat

IS

ion Order in Tteration Space

Impact on V

—> for JJ = 0 to N-1 by B

0O to N-1

for

for

-1

O to N

for

for

JJ to max(N-1,JJ+B-1)

_i =

1

=0 to N
1

J

F(ALTIL.ALID

D:;

A

AL

o
J
d
d

€6

S0 0-8-8-8
S 0-060-C
S-0-0-8
S=0-0-8

€
€
€
€

€6
—-6—-6—-0—%>6
S3-O-0-0T8

ONONO

(3
|
)

(3
|
)

()
|
1)

&) KU

&) 1) ‘2

&) 1) 1)

W1 @D Q)

W QD U
(P
ONONO

&) Q@ G

|
¢)

|
()

(A

o O-C

J
Carnegie Mellon -

Todd C. Mowry

-19-

CS745: Memory Hierarchy Optimizations

Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for 1 = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
cli.k] += a[1,31*bl.K];

O to N-1
= 0 to N-1

for k = 0 to N-1
i

 brings square sub-blocks of matrix "b" into the cache
« completely uses them up before moving on

I, Carnegie Melon [
Todd C. Mowry

CS745: Memory Hierarchy Optimizations -20-

Predicting Cache Behavior through "Locality Analysis”

« Definitions:
Reuse:
- accessing a location that has been accessed in the past

Locality:
» accessing a location that is now found in the cache

« Key Insights
Locality only occurs when there is reusel
BUT, reuse does not necessarily result in locality.
* why not?

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -21- Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
if caches were infinitely large, we would be finished
2. Determine "localized iteration space”

- set of inner loops where the data accessed by an iteration is
expected to fit within the cache

3. Find data locality:
reuse N localized iteration space = locality

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -22- Todd C. Mowry

Types of Data Reuse/Locality

for 1 = 0 to 2

for J = 0 to 100 O Hit
ALi]01]1 = s110]1 + BJ+1][0]; @ Miss
ALil101] BJ+1][0] BLj1[O]
'eo0eo0eo0eo0 'oooooooo 'oooooooo
0000000 00000000 OOOO0OO0O0O0O
@0000000 ©0000000 ©0000000
j j j
Spatial Temporal Group

R C-rregi veton [

CS745: Memory Hierarchy Optimizations -23- Todd C. Mowry

Reuse Analysis: Representation

for 1 = 0 to 2
for J = 0 to 100

Alr1D1 = B1I0]1 + B3+11[0];
* Map 7nloop indices into darray indices via array indexing function:

f() = Hi+ ¢

ren 1 0|[+],]0]
A[i] [5] _A<_O 1 _j_+_0_>
B[j][O]=B<8(1) ;+8>
B[j+11[0] = B< s o+ : >

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -24- Todd C. Mowry

Finding Temporal Reuse

« Temporal reuse occurs between iterations 71 and 7o
whenever: N . . N
Hiyy +c= Hip +c
H(iy —7) =0

« Rather than worrying about individual values of 71 and 2,
we say that reuse occurs along direction vector when:

H(7) =0

 Solution: compute the nullspace of H

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -25- Todd C. Mowry

Temporal Reuse Example

for 1 = 0 to 2

for j = 0 to 100 v

AL101 = BO1001 + B+1]1[0];
. Reuse between iterations (ij,) and (i,.j.) whenever:
Solln]+le]=[58]z]+ 5
s3]z

« True whenever j; = j,, and regardless of the difference
between i; and i,,.

* i.e. whenever the difference lies along the nullspace of [0 0]
which is span{(1,0)} (i.e. the outer loop).

I - <o on [
CS745: Memory Hierarchy Optimizations -26- Todd C. Mowry

More Complicated Example

for 1 = 0 to N-1

O Hit
@ Miss

for j = 0 to N-1
ALi+31[0] = 1*j;

. 11 '
A[1+J][O]=A<[0 O] [:

* Nullspace of [(1) (1)] = span{(1,-1)}.

Carnegie Mellon [l

CS745: Memory Hierarchy Optimizations -27- Todd C. Mowry

Computing Spatial Reuse

* Replace last row of A with zeros, creating H,
« Find the nullspace of H,

« Result: vector along which we access the same row

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -28- Todd C. Mowry

Computing Spatial Reuse: Example

for 1 = 0 to 2]

0000000 .
j = O Hit
for j = 0 to 100 _ 0000000 '.
Al11031 = BLJ110] + B[j+1]1[0]; ©00000eo0 @ Miss
J
e 1 017 0
= #([5 2[5+ o))

. H, =

10
O O
* Nullspace of H, = span{(0,1)}
» i.e. access same row of A[i1[J] along inner loop

R C-rregi veton [

CS745: Memory Hierarchy Optimizations -29- Todd C. Mowry

Computing Spatial Reuse: More Complicated Example

for 1 = 0 to N-1 1

O Hit
@ Miss

for j = 0 to N-1
ALi+3] = 1™J;

/ [

A[i+j]:AU 1 1H;J+[o}

« H.=[0 0]

N~ .~

* Nullspace of 4 = span{(1,-1)} AN

« Nullspace of H, = span{(1,0),(0,1)} | —

Carnegie Mellon -

CS745: Memory Hierarchy Optimizations -30- Todd C. Mowry

Group Reuse

for 1 = 0 to 2
for J = 0 to 100

ALI1LI1 = BLIT[O] + BLi+11[0];
N 7

* Only consider "uniformly generated sets”
index expressions differ only by constant terms
* Check whether they actually do access the same cache line
* Only the "leading reference” suffers the bulk of the cache misses

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -31- Todd C. Mowry

Localized Tteration Space

for 1 = 0 to 2
for J = 0 to 8
AL101 = sO1Lo] + BO+11[0]:

_ '0oo0o000000
BJ+11[01 ooo0o0000O
00000000

J
Localized: both i and j loops
(i.e. span{(1,0),(0,1)}

Given finite cache, when does reuse result in locality?

for 1 = 0 to 2
for J = 0 to 1000000

ALi10]1 = BO1001 + BL+1]1[0];
) i Q00 O0\0000
BJ+11I0] e e e 0220 XX
Q0 00\000 ._
J
Localized: j loop only
(i.e. span{(0,1)})

Localized if accesses less data than effective cache size

I, Carnegie Melon [
Todd C. Mowry

CS745: Memory Hierarchy Optimizations

-32-

Computing Locality

« Reuse Vector Space n Localized Vector Space = Locality Vector Space

« Example: for 1 = 0 to 2

for J = 0 to 100 /

AL1D] = Ba100] + BL3+1]I0]:

« If both loops are localized:
» span{(1,0)} N span{(1,0),(0,1)} = span{(1,0)}
- i.e. temporal reuse does result in temporal locality

e If only the innermost loop is localized:
- span{(1,0)} N span{(0,1)} = span{}
* i.e. no femporal locality

I Carnegie Melion [

CS745: Memory Hierarchy Optimizations -33- Todd C. Mowry

