
Lectures 25-26

Memory Hierarchy Optimizations &

Locality AnalysisLocality Analysis

Carnegie Mellon

CS745: Memory Hierarchy Optimizations Todd C. Mowry

Caches: A Quick ReviewCaches: A Quick Review

• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect p p

performance?

CS745: Memory Hierarchy Optimizations -2-

Carnegie Mellon

Todd C. Mowry

Optimizing Cache PerformanceOptimizing Cache Performance

• Things to enhance:
• temporal locality
• spatial localityp y

• Things to minimize:
• conflicts (i e bad replacement decisions)• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

CS745: Memory Hierarchy Optimizations -3-

Carnegie Mellon

Todd C. Mowry

Two Things We Can ManipulateTwo Things We Can Manipulate

• Time:
• When is an object accessed?

• Space:
• Where does an object exist in the address space?

How do we exploit these two levers?

CS745: Memory Hierarchy Optimizations -4-

Carnegie Mellon

Todd C. Mowry

Time: Reordering ComputationTime: Reordering Computation

• What makes it difficult to know when an object is accessed?What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
What information is needed?• What information is needed?

• How do we know that this would be safe?

CS745: Memory Hierarchy Optimizations -5-

Carnegie Mellon

Todd C. Mowry

Space: Changing Data LayoutSpace: Changing Data Layout

• What do we know about an object’s location?
• scalars, structures, pointer-based data structures, arrays,

code, etc.

• How can we tell what a better layout would be?
• how many can we create?how many can we create?

• To what extent can we safely alter the layout?

CS745: Memory Hierarchy Optimizations -6-

Carnegie Mellon

Todd C. Mowry

Types of Objects to ConsiderTypes of Objects to Consider

• Scalars
• Structures & Pointers
• Arraysy

CS745: Memory Hierarchy Optimizations -7-

Carnegie Mellon

Todd C. Mowry

ScalarsScalars

i t• Locals

• Globals

int x;
double y;
foo(int a){
i i

• Procedure arguments

int i;
…
x = a*i;

• Is cache performance a concern here?
• If so, what can be done?

…
}

CS745: Memory Hierarchy Optimizations -8-

Carnegie Mellon

Todd C. Mowry

Structures and PointersStructures and Pointers

struct {

• What can we do here?
• within a node
• across nodes

int count;
double velocity;
double inertia;across nodes
struct node *neighbors[N];

} node;

• What limits the compiler’s ability to optimize here?

CS745: Memory Hierarchy Optimizations -9-

Carnegie Mellon

Todd C. Mowry

ArraysArrays

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

• usually accessed within loops nests

A[i][j] = B[j][i];

y p
• makes it easy to understand “time”

• what we know about array element addresses:
• start of array?• start of array?
• relative position within array

CS745: Memory Hierarchy Optimizations -10-

Carnegie Mellon

Todd C. Mowry

Handy Representation: “Iteration Space”Handy Representation: Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• each position represents an iteration

j

CS745: Memory Hierarchy Optimizations -11-

Carnegie Mellon

Todd C. Mowry

p p

Visitation Order in Iteration SpaceVisitation Order in Iteration Space

f i 0 1

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

• Note: iteration space  data space

j

CS745: Memory Hierarchy Optimizations -12-

Carnegie Mellon

Todd C. Mowry

• Note: iteration space  data space

When Do Cache Misses Occur?When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

A B
i i

A B

j j

CS745: Memory Hierarchy Optimizations -13-

Carnegie Mellon

Todd C. Mowry

When Do Cache Misses Occur?When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N 1

i

for j = 0 to N-1
A[i+j][0] = i*j;

jj

CS745: Memory Hierarchy Optimizations -14-

Carnegie Mellon

Todd C. Mowry

Optimizing the Cache Behavior of Array AccessesOptimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:We need to answer the following questions
• when do cache misses occur?

• use “locality analysis”
can we change the order of the iterations (or possibly data • can we change the order of the iterations (or possibly data
layout) to produce better behavior?

• evaluate the cost of various alternatives
d h d i /l ill d l ?• does the new ordering/layout still produce correct results?

• use “dependence analysis”

CS745: Memory Hierarchy Optimizations -15-

Carnegie Mellon

Todd C. Mowry

Examples of Loop TransformationsExamples of Loop Transformations

• Loop Interchangep
• Cache Blocking
• Skewing
• Loop ReversalLoop Reversal
• …

(ill b i fl di th fi t t)(we will briefly discuss the first two)

CS745: Memory Hierarchy Optimizations -16-

Carnegie Mellon

Todd C. Mowry

Loop InterchangeLoop Interchange

for i = 0 to N-1 for j = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;
for i = 0 to N-1

A[j][i] = i*j;

i Hit
Miss

j

• (assuming N is large relative to cache size)
j i

CS745: Memory Hierarchy Optimizations -17-

Carnegie Mellon

Todd C. Mowry

g g

Cache Blocking (aka “Tiling”)Cache Blocking (aka Tiling)

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = 0 to N-1
f(A[i],A[j]);

for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)

f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

now we can exploit temporal locality

jjjj

CS745: Memory Hierarchy Optimizations -18-

Carnegie Mellon

Todd C. Mowry

now we can exploit temporal locality

Impact on Visitation Order in Iteration SpaceImpact on Visitation Order in Iteration Space

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = 0 to N-1
f(A[i],A[j]);

for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)

f(A[i],A[j]);

i i

CS745: Memory Hierarchy Optimizations -19-

Carnegie Mellon

Todd C. Mowry

j j

Cache Blocking in Two DimensionsCache Blocking in Two Dimensions

for i = 0 to N-1
f j 0 t N 1

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for i = 0 to N-1
for j JJ to ma (N 1 JJ+B 1)for j = 0 to N-1

for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];

for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

• brings square sub-blocks of matrix “b” into the cache
• completely uses them up before moving on

CS745: Memory Hierarchy Optimizations -20-

Carnegie Mellon

Todd C. Mowry

Predicting Cache Behavior through “Locality Analysis”Predicting Cache Behavior through Locality Analysis

• Definitions:
• Reuse:

• accessing a location that has been accessed in the past
• Locality:y

• accessing a location that is now found in the cache

• Key InsightsKey Ins ghts
• Locality only occurs when there is reuse!
• BUT, reuse does not necessarily result in locality.

• why not?why not?

CS745: Memory Hierarchy Optimizations -21-

Carnegie Mellon

Todd C. Mowry

Steps in Locality AnalysisSteps in Locality Analysis

1. Find data reuse
• if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
l• set of inner loops where the data accessed by an iteration is

expected to fit within the cache

3. Find data locality:. F n ata ca ty
• reuse  localized iteration space  locality

CS745: Memory Hierarchy Optimizations -22-

Carnegie Mellon

Todd C. Mowry

Types of Data Reuse/LocalityTypes of Data Reuse/Locality

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Hit
Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]

j j j

Spatial Temporal Group

CS745: Memory Hierarchy Optimizations -23-

Carnegie Mellon

Todd C. Mowry

Reuse Analysis: RepresentationReuse Analysis: Representation
for i = 0 to 2
for j = 0 to 100

• Map n loop indices into d array indices via array indexing function:

A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -24-

Carnegie Mellon

Todd C. Mowry

Finding Temporal Reuse

• Temporal reuse occurs between iterations and

Finding Temporal Reuse

p
whenever:

• Rather than worrying about individual values of and , y g
we say that reuse occurs along direction vector when:

• Solution: compute the nullspace of H

CS745: Memory Hierarchy Optimizations -25-

Carnegie Mellon

Todd C. Mowry

Temporal Reuse ExampleTemporal Reuse Example

for i = 0 to 2
for j = 0 to 100

• Reuse between iterations (i j) and (i j) whenever:

for j 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference
between i1 and i2.
• i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

CS745: Memory Hierarchy Optimizations -26-

Carnegie Mellon

Todd C. Mowry

More Complicated ExampleMore Complicated Example

f i 0 t N 1 ifor i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

Hit
Miss

i

j

• Nullspace of = span{(1,-1)}.

CS745: Memory Hierarchy Optimizations -27-

Carnegie Mellon

Todd C. Mowry

Computing Spatial ReuseComputing Spatial Reuse

• Replace last row of H with zeros, creating Hs
• Find the nullspace of Hs

• Result: vector along which we access the same row

CS745: Memory Hierarchy Optimizations -28-

Carnegie Mellon

Todd C. Mowry

Computing Spatial Reuse: ExampleComputing Spatial Reuse: Example

for i = 0 to 2 ifor i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit
Miss

j

• Hs =

• Nullspace of Hs = span{(0,1)}
• i.e. access same row of A[i][j] along inner loop

CS745: Memory Hierarchy Optimizations -29-

Carnegie Mellon

Todd C. Mowry

Computing Spatial Reuse: More Complicated ExampleComputing Spatial Reuse: More Complicated Example

f i 0 t N 1 ifor i = 0 to N-1
for j = 0 to N-1

A[i+j] = i*j;

Hit
Miss

i

• Hs =

N ll f H {(1 1)}

j

• Nullspace of H = span{(1,-1)}

• Nullspace of Hs = span{(1,0),(0,1)}

CS745: Memory Hierarchy Optimizations -30-

Carnegie Mellon

Todd C. Mowry

Nullspace of Hs span{(1,0),(0,1)}

Group ReuseGroup Reuse

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Only consider “uniformly generated sets”
• index expressions differ only by constant terms

Ch k h th th t ll d th h li• Check whether they actually do access the same cache line
• Only the “leading reference” suffers the bulk of the cache misses

CS745: Memory Hierarchy Optimizations -31-

Carnegie Mellon

Todd C. Mowry

Localized Iteration SpaceLocalized Iteration Space

• Given finite cache, when does reuse result in locality?Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0]; A[i][j] = B[j][0] + B[j+1][0];

i

B[j+1][0]

i

B[j+1][0]

j

B[j+1][0]

j

B[j+1][0]

Localized: both i and j loops Localized: j loop only

• Localized if accesses less data than effective cache size

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

CS745: Memory Hierarchy Optimizations -32-

Carnegie Mellon

Todd C. Mowry

• Localized if accesses less data than effective cache size

Computing LocalityComputing Locality

• Reuse Vector Space  Localized Vector Space  Locality Vector Spacep p y p

• Example: for i = 0 to 2
for j = 0 to 100

• If both loops are localized:
{(1 0)} {(1 0) (0 1)} {(1 0)}

A[i][j] = B[j][0] + B[j+1][0];

• span{(1,0)}  span{(1,0),(0,1)}  span{(1,0)}
• i.e. temporal reuse does result in temporal locality

f l h l l l d• If only the innermost loop is localized:
• span{(1,0)}  span{(0,1)}  span{}
• i.e. no temporal locality

CS745: Memory Hierarchy Optimizations -33-

Carnegie Mellon

Todd C. Mowry

