Lectures 25-26
Memory Hierarchy Optimizations &
Locality Analysis

I - <5 velon [

CS745: Memory Hierarchy Optimizations Todd C. Mowry

|
Caches: A Quick Review

» How do they work?
* Why do we care about them?
* What are typical configurations today?

* What are some important cache parameters that will affect
performance?

I - 75 velon [

CS745: Memory Hierarchy Optimizations -2- Todd C. Mowry

Optimizing Cache Performance

* Things to enhance:
+ temporal locality
+ spatial locality

* Things to minimize:
+ conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

I - velon [

CS745: Memory Hierarchy Optimizations -3- Todd C. Mowry

Two Things We Can Manipulate

o Time:
* When is an object accessed?

* Space:
* Where does an object exist in the address space?

How do we exploit these two levers?

R < veion [

CS745: Memory Hierarchy Optimizations -4- Todd C. Mowry

Time: Reordering Computation

* What makes it difficult to know whenan object is accessed?

* How can we predict a better time to access it?
+ What information is needed?

« How do we know that this would be safe?

I - <5 velon [

CS745: Memory Hierarchy Optimizations -5- Todd C. Mowry

Space: Changing Data Layout

* What do we know about an object's location?
scalars, structures, pointer-based data structures, arrays,
code, etc.

* How can we tell what a better layout would be?
how many can we create?

* To what extent can we safely alter the layout?

I - 75 velon [

CS745: Memory Hierarchy Optimizations -6- Todd C. Mowry

Types of Objects to Consider

e Scalars
e Structures & Pointers
* Arrays

I - velon [

CS745: Memory Hierarchy Optimizations -7- Todd C. Mowry

Scalars
* Locals int x;
double vy;
foo(int a
- Globals otint)¢
int i;
* Procedure arguments o« = axi:
» TIs cache performance a concern here? 3

e If so, what can be done?

I < veion [

CS745: Memory Hierarchy Optimizations -8- Todd C. Mowry

Structures and Pointers

struct {
« What can we do here? int count;
. within a node double velocity;

double inertia;
+ across nodes _
struct node *neighbors[N];

} node;

* What limits the compiler's ability to optimize here?

I - <5 velon [

CS745: Memory Hierarchy Optimizations -9- Todd C. Mowry

Arrays
double A[NI[N], BIN1[N];:

¥or i =0 toN-1
for j = 0 to N-1
ALI10]1 = BOIL]:

« usually accessed within loops nests
* makes it easy to understand “time"

* what we know about array element addresses:
+ start of array?
* relative position within array

I - 75 velon [

CS745: Memory Hierarchy Optimizations -10- Todd C. Mowry

Handy Representation: "Iteration Space”

[oNeXe]
[oNeXe]
for i = 0 to N-1 [oNeXe]
for j = 0 to N-1 oo0o0
ALIIGD = BOICI]; 900
o000

00O

000000
000000
000000
000000
000000
000000
000000
000000
000000

000000000

000000000000
000000000000

+ each position represents an iteration

I - veicn [

CS745: Memory Hierarchy Optimizations -11- Todd C. Mowry

Visitation Order in Iteration Space

for i = 0 to N-1
for j = 0 to N-1
ALiI10O1 = BO1L]:

* Note: iteration space = data space

I < veion [

CS745: Memory Hierarchy Optimizations -12- Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1
ALTI0O] = BOL]:;

B

'"oooooo000 'oooooo000

00000000 00000000

00000000 00000000

00000000 00000000

00000000 00000000

00000000 00000000

00000000 00000000

00000000 00000000

j i
I carnegie Melion [
CS745: Memory Hierarchy Optimizations -13- Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1

000O0O0O0O0OO
STETRICHIN

A[i+j1[0] = i*j;
L3100] 00000000
000O0O00O0O

00000000

I - 75 velon [

CS745: Memory Hierarchy Optimizations -14- Todd C. Mowry

Optimizing the Cache Behavior of Array Accesses

* We need to answer the following questions:
+ when do cache misses occur?
- use “locality analysis"

+ can we change the order of the iterations (or possibly data
layout) to produce better behavior?

+ evaluate the cost of various alternatives
+ does the new ordering/layout still produce correct results?
- use “dependence analysis"

I - velon [

CS745: Memory Hierarchy Optimizations -15- Todd C. Mowry

Examples of Loop Transformations

* Loop Interchange
» Cache Blocking

* Skewing

+ Loop Reversal

(we will briefly discuss the first two)

I < veion [

CS745: Memory Hierarchy Optimizations -16- Todd C. Mowry

Loop Interchange

for i = 0 to N-1 for j = 0 to N-1

for j =0 to N-><>for i =01toN-1
ALILIT = i AL = i

igcec0o0o0o0o00 Jeoeoeoeo |[OHit

00000000 ©@0000000 |® Miss
ecccccocoe > ©0000000
00000000 00000000
00000000 ©@0000000
00000000 ©0000000
00000000 ©@0000000
00000000 00000000
j i

» (assuming N is large relative to cache size)

Y - rregie Metion [

CS745: Memory Hierarchy Optimizations -17- Todd C. Mowry

|
Cache Blocking (aka “Tiling")

—— for JJ = 0 to N-1 by B
for i = 0 to N-1 for i = 0 to N-1

for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
TCALI]LALID:; fALI]LALID:

Ali] ALl Ali] ALl
ioo000000 00000000 :iI0000OOOOO Ii00OOOOOO
00000000 000000O0O 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 000000O0O 00000000 000000O0O
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 ;: 0OOOOO000 00000000

J J J J

now we can exploit temporal locality

CS745: Memory Hierarchy Optimizations -18- Todd C. Mowry

Impact on Visitation Order in Iteration Space

— for JJ = 0 to N-1 by B
for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
T(ALI1.AOD:; FALI].AOD:

i
I - velon [

CS745: Memory Hierarchy Optimizations -19- Todd C. Mowry

Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
for k = 0 to N-1 for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j1*b[j.k1; c[i,k] += a[i,j1*b[j.k];

* brings square sub-blocks of matrix "b" into the cache
 completely uses them up before moving on

I < veion [

CS745: Memory Hierarchy Optimizations -20- Todd C. Mowry

Predicting Cache Behavior through "Locality Analysis"

» Definitions:
* Reuse:
+ accessing a location that has been accessed in the past
- Locality:
+ accessing a location that is now found in the cache

* Key Insights
+ Locality only occurs when there is reusel
BUT, reuse does not necessarily result in locality.
+ why not?

I - <5 velon [

CS745: Memory Hierarchy Optimizations -21- Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
+ if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

+ set of inner loops where the data accessed by an iteration is
expected to fit within the cache

3. Find data locality:

* reuse N localized iteration space = locality

I - 75 velon [

CS745: Memory Hierarchy Optimizations -22- Todd C. Mowry

Types of Data Reuse/Locality

for i =0 to 2

for j = 0 to 100 O Hit
ALIIL] = BOIIO] + BO+11[01; ® Miss

AL BLi+11[0] BLi1C0]

'eoeoeoeo 'o0ooooooo "oooooooo
©0000000 00000000 00000000
00000000 ©0000000 00000000

i I i

Spatial Temporal Group

I - veion [

CS745: Memory Hierarchy Optimizations -23- Todd C. Mowry

Reuse Analysis: Representation

for i =0 to 2
for j = 0 to 100

AL[I10]1 = BO1[0] + BO+11[01;
* Map nloop indices into darray indices via array indexing function:

f@ =Hr+¢é

o = x([32][1]+]3))
B[jI[0] = B([g flJH;]JF[(SD
B[j+1][0] = B([g éH;]Jr[Cl’D

R < veion [

CS745: Memory Hierarchy Optimizations -24- Todd C. Mowry

Finding Temporal Reuse

+ Temporal reuse occurs between iterations 77 and 25
whenever: .., . o .., ., _
H11 +—c= Hi1p +

HG —7) = 0
« Rather than worrying about individual values of 71 and 72,

we say that reuse occurs along direction vector 7 when:

—

H(7) =0

* Solution: compute the nullspace of H

I - <5 velon [

CS745: Memory Hierarchy Optimizations -25- Todd C. Mowry

Temporal Reuse Example

for i =0 to 2
for j = 0 to 100
ALiI10]1 = BO100] + BLi+11[0];

* Reuse between iterations (iy,j;) and (i»,j,) whenever:
[2olla]+[o]=[e o] 5]+ [c]
[33](572]=[8]
* True whenever j; = j,, and regardless of the difference
between i; and i,. [0]
oo

+ i.e. whenever the difference lies along the nullspace of
which is span{(1,0)} (i.e. the outer loop).

I - 75 velon [

CS745: Memory Hierarchy Optimizations -26- Todd C. Mowry

More Complicated Example

for i = 0 to N-1 i P
for j = 0 to N-1 % O Hir

ALI+1[0] = i*j; O Miss

o=+ ([3 2][)+(2)) N

+ Nullspace of [(1) é]:span{(l,—l)}.

Carnegie Mellon -

Todd C. Mowry

CS745: Memory Hierarchy Optimizations -27-

Computing Spatial Reuse

* Replace last row of Hwith zeros, creating H,
+ Find the nullspace of A,

+ Result: vector along which we access the same row

I < veion [

CS745: Memory Hierarchy Optimizations -28- Todd C. Mowry

Computing Spatial Reuse: Example

for i =0 to 2 i
sos0e0ee [om
Alil1l31 = B[i1[0] + B[j+11[0]; © Miss
[i1[i] Lilro] Li+11[0]; 00000000
J
e 1o][i 0
ean = ([3] [5]+[3])
_J10
As o o)

* Nullspace of H; = span{(0,1)}
- i.e. access same row of A[i][j] along inner loop

I - <5 velon [

CS745: Memory Hierarchy Optimizations -29- Todd C. Mowry

Computing Spatial Reuse: More Complicated Example

for i = 0 to N-1 i

O Hit
@ Miss

for j = 0 to N-1
ALi+1] = i*];

A[i+j]=A<[1 1}[;]+[0})
« H.=[0 0] %

+ Nullspace of A4 = span{(1,-1)} N

+ Nullspace of A, = span{(1,0),(0,1)} | —

Carnegie Mellon -

CS745: Memory Hierarchy Optimizations -30- Todd C. Mowry

Group Reuse

for i =0 to 2
for j = 0 to 100
ALi10] = BO1[0] + BLj+11[0];
N 7

* Only consider “uniformly generated sets”
+ index expressions differ only by constant terms
» Check whether they actually do access the same cache line
* Only the "leading reference” suffers the bulk of the cache misses

I - veion [

CS745: Memory Hierarchy Optimizations -31- Todd C. Mowry

Localized Iteration Space

» Given finite cache, when does reuse result in locality?

for i =0 to 2 for i =0 to 2
for j =0 to 8 for j = 0 to 1000000
ALTILI] = BOI[O] + BLi+11[01; ALII0] = BL1[0] + BLi+11[0];
R iOOOOOOOO _ i.... 000
B+11[01 60000000 BL+11[0] eeeefeeee
00000000 oooo\\0000
] J
Localized: both i and j loops Localized: j loop only
(i.e. span{(1,0),(0,1)}) (i.e. span{(0,1)})

e Localized if accesses less data than effective cache size

R < veion [

CS745: Memory Hierarchy Optimizations -32- Todd C. Mowry

Computing Locality

* Reuse Vector Space n Localized Vector Space = Locality Vector Space

» Example: for i = 0 to 2
for j = 0 to 100
ALTI0] = BOII[O] + BLO+11001;
» If both loops are localized:

+ span{(1,0)} m span{(1,0),(0,1)} = span{(1,0)}
* i.e. temporal reuse does result in temporal locality

* If only the innermost loop is localized:
+ span{(1,0)} m span{(0,1)} = span{}
+ i.e. no femporal locality

I - <5 velon [

CS745: Memory Hierarchy Optimizations -33- Todd C. Mowry

