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Compiler Algorithms for Prefetching Data

f h f  I. Prefetching for Arrays

II. Prefetching for Recursive Data Structures
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The Memory Latency Problem

•  processor speed >>  memory speed
• caches are not a panacea
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Uniprocessor Cache Performance on Scientific Code

• Applications from SPEC, SPLASH, and NAS Parallel.
• Memory subsystem typical of MIPS R4000 (100 MHz):

8K / 256K di t d h  32 b t  li– 8K / 256K direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• 8 of 13 spend > 50% of time stalled for memory
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Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results• Prefetching Compiler Algorithm and Results

• Implications of These Results

Carnegie Mellon
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Coping with Memory Latency

Reduce Latency:

– Locality Optimizationsy p
• reorder iterations to improve cache reuse

Tolerate Latency:y

– Prefetching
• move data close to the processor before it is needed
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Tolerating Latency Through Prefetching
Without Prefetching With Prefetching

Time
Prefetch A
Prefetch B

Load A Load A
Load B

Fetch A
Fetch B

Load B

Fetch A
Load B

Load B

Fetch B Executing Instructions

Stalled Waiting for Data

• overlap memory accesses with computation and other accesses
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Types of Prefetching

Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads: 
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage
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Prefetching Research Goals

• Domain of Applicability

• Performance Improvement• Performance Improvement
– maximize benefit
– minimize overhead
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Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis: what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch
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Reducing Prefetching Overhead

• instructions to issue prefetches
• extra demands on memory system

Hit Rates for Array Accesses

• important to minimize unnecessary prefetches
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Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
l– set of inner loops where the data accessed by an iteration is 

expected to fit within the cache

3. Find data locality:. F n  ata ca ty
– reuse  localized iteration space  locality
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Data Locality Example

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Hit
Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]

j j j

Spatial Temporal Group
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Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100

• Map n loop indices into d array indices via array indexing function:

A[i][j] = B[j][0] + B[j+1][0];
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Finding Temporal Reuse

• Temporal reuse occurs between iterations     and whenever:p

• Rather than worrying about individual values of and  , we say 
that reuse occurs along direction vector when:that reuse occurs along direction vector when:

• Solution: compute the nullspace of H
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Temporal Reuse Example

for i = 0 to 2
for j = 0 to 100

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

for j  0 to 100
A[i][j] = B[j][0] + B[j+1][0];

1 j1 2 j2

• True whenever j1 = j2, and regardless of the difference between 
i and ii1 and i2.
– i.e. whenever the difference lies along the nullspace of         , 

which is span{(1,0)} (i.e. the outer loop).
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Localized Iteration Space

• Given finite cache, when does reuse result in locality?Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0]; A[i][j] = B[j][0] + B[j+1][0];

i

B[j+1][0]

i

B[j+1][0]

j

B[j+1][0]

j

B[j+1][0]

Localized: both i and j loops Localized: j loop only

• Localized if accesses less data than effective cache size

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})
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Computing Locality

• Reuse Vector Space  Localized Vector Space  Locality Vector Spacep p y p

• Example: for i = 0 to 2
for j = 0 to 100

• If both loops are localized:
{(1 0)} {(1 0) (0 1)} {(1 0)}

A[i][j] = B[j][0] + B[j+1][0];

– span{(1,0)}  span{(1,0),(0,1)}  span{(1,0)}
– i.e. temporal reuse does result in temporal locality

f l  h   l   l l d• If only the innermost loop is localized:
– span{(1,0)}  span{(0,1)}  span{}
– i.e. no temporal locality
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Prefetch Predicate

Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

Example: for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0[i] none[ ]=[ ][j] (j mod 2)  0

B[j+1][0] i = 0

[ij] spatial[ ]=

[ij] temporal
none[ ]=
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Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large• Suppress transformations when loops become too large
– avoid code explosion
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Software Pipelining

where l = memory latency  s = shortest path through loop body

Iterations Ahead =  l
s

where l = memory latency, s = shortest path through loop body

O i i l L
Software Pipelined Loop 

(5 it ti  h d)

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop

for (i = 0; i<5; i++)     /* Prolog */
prefetch(&a[i]);

(5 iterations ahead)

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);
a[i] = 0;

}}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Carnegie Mellon
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Example Revisited

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);

Code with Prefetching

p ( [j ][ ]);
prefetch(&A[0][j+1]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];

Cache Hit
Cache Miss i = 0

A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {

i
A[i][j]

for (i = 1; i < 3; i++) {
prefetch(&A[i][0]);
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+7]);
A[i][j] = B[j][0] + B[j+1][0];
[i][j 1] [j 1][0] [j 2][0]

j

B[j+1][0]
i > 0 A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

i
i > 0
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Experimental Framework (Uniprocessor)

Architectural Extensions:
– Prefetching support:

l k f  h• lockup-free caches
• 16-entry prefetch issue buffer
• prefetch directly into both levels of cache

Contention:– Contention:
• memory pipelining rate = 1 access every 20 cycles
• primary cache tag fill = 4 cycles

– Misses get priority over prefetchesMisses get priority over prefetches

Simulator:
– detailed cache simulator driven by pixified object codedetailed cache simulator driven by pixified object code.
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Experimental Results (Dense Matrix Uniprocessor)

• Performance of Prefetching Algorithm
– Locality AnalysisL y y
– Software Pipelining

• Interaction with Locality Optimizer

Carnegie Mellon
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Performance of Prefetching Algorithm

 ll  d d b  50%  90%

(N = No Prefetching, S = Selective Prefetching)

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%

Carnegie Mellon
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Effectiveness of Locality Analysis

S l ti  I di i i t f t hi

(I = Indiscriminate Prefetching, S = Selective Prefetching)

Selective vs. Indiscriminate prefetching:
• similar reduction in memory stalls
• significantly less overhead
• 6 of 13 have speedups over 20%

Carnegie Mellon

• 6 of 13 have speedups over 20%
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Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

Indiscriminate
S l tiSelective

• fewer unnecessary prefetchesfewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)
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Effectiveness of Software Pipelining

Original Miss Breakdown

• Large pf miss  ineffective scheduling• Large pf-miss  ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache
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Interaction with Locality Optimizer

(Cache Blocking) (Loop Interchange)

• locality optimizations reduce number of cache misses
• prefetching hides any remaining latency
• best performance through a combination of both

Carnegie Mellon
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Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch

sum +  A[index[i]];

– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

Carnegie Mellon
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Software Pipelining for Indirections

f (i 0 i<100 i++)

Original Loop
f (i 0 i<5 i++) /* P l  1 */

Software Pipelined Loop 
(5 iterations ahead)

for (i = 0; i<100; i++)
sum += A[index[i]];

for (i = 0; i<5; i++)     /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) {   /* Prolog 2 */
prefetch(&index[i+5]);p
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++)  /* Epilog 2 */

sum += A[index[i]];
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Todd C. Mowry15-745: Data Prefetching 32



Indirection Prefetching Results

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG
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Summary of Results

Dense Matrix Code:
– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively
– significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases

Carnegie Mellon
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Prefetching for Arrays: Concluding Remarks

• Demonstrated that software prefetching is effective
– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient memory bandwidth
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Part II: Prefetching for Recursive Data StructuresPart II: Prefetching for Recursive Data Structures

Carnegie Mellon
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Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structures
– especially in non-numeric programs

• Cache miss behavior is a concern because:• Cache miss behavior is a concern because:
– large data set with respect to the cache size
– temporal locality may be poor

littl  ti l l lit   ti l d d– little spatial locality among consecutively-accessed nodes

Goal:
A t ti  C il B d P f t hi f  R i  D t  St t• Automatic Compiler-Based Prefetching for Recursive Data Structures

Carnegie Mellon
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Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms

• Experimental Results

• ConclusionsConclusions

Carnegie Mellon
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Scheduling Prefetches for Recursive Data Structures

n

currently visiting

n n n

p
want to prefetch

ni ni+1 ni+2 ni+3

Lp = &n0
loading a node

work()

W

while  (p){
work(p ->data );
p  = p->next ;

}

loa d *p  here

W

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

}

Our Goal: fully hide latency
•  thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

– thus achieving fastest possible computation rate of 1/W 

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this
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Performance without Prefetching
Time

while  (p ){
work(p ->data );

Wi+1

ni

ni+1 Li+1

Li Wi

p = p->next;
}

i+1

ni+2

i 1

Li+2 Wi+2

ni+3 Li+3 Wi+3

 computa tion ra te = 1/ (L+W)

computation rate = 1 / (L+W)

Carnegie Mellon
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Prefetching One Node AheadPrefetching One Node Ahead

while  (p ){
pf(p->next);

k( d t )

Time

pre fetc h

ni

ni+1

Wi

Wi+1

work(p ->data );
p  = p->next;

}

Li

Li+1

visiting

ni+2

n

Wi+2

Wi 3

pf(pi->next)
Li+2

L
Lk load ing nk

ni+3 Wi+3Li+3work(nk)Wk

da ta d epend enc e

 computation rate = 1/ L
•  Comp uta tio n is overla p ped  with memory a c c esses• Computation is overlapped with memory accesses

computation rate = 1/L
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Prefetching Three Nodes AheadPrefetching Three Nodes AheadPrefetching Three Nodes Ahead

Time

while  (p ){
pf(p->next->next->next);
work(p ->data );

> t

ni+1 Wi+1

Li

Li+1

visiting
ni Wi

p = p->next;
}

L

pre fetc h

ni+2

ni+3

Li+2

Li+3

Wi+2

Wi+3

pf(pi->next->next->next)

computation rate does not improve (still = 1/ L)!computation rate does not improve (still = 1/L)! computation rate does not improve (still  1/ L)!

Pointer-Chasing Problem:
any scheme which follows the pointer chain is limited to a rate of 1/L

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L
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Our Goal: Fully Hide LatencyOur Goal: Fully Hide LatencyOur Goal: Fully Hide Latency

while  (p ){

Time

ni

ni+1

Li Wi

Li+1 Wi+1

pf(&ni+3);
work(p ->data );
p  = p->next;

}

visiting

ni+2 Li+2 Wi+2

}

pre fetc h ni+3 Li+3 Wi+3

pf(&ni+3) 

pre fetc h

 achieves the fastest possible computa tion rate of 1/ W• achieves the fastest possible computation rate of 1/W
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Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms
– Greedy Prefetching
– History-Pointer Prefetching

D t Li i ti  P f t hi– Data-Linearization Prefetching

• Experimental Results

• ConclusionsConclusions
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Overcoming the Pointer-Chasing ProblemOvercoming the Pointer-Chasing Problem
Key:

 ni needs to know &ni+d without referencing the d-1 intermediate nodes
Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Our proposals:
use existing  po inter(s) in n i to  a pproximate &ni+d

an existing p ointer

Greedy Prefetching

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

a dd new po inter(s) to  ni to  a pproximate &ni+d

ni ni+d

n

a new p ointer

Greedy Prefetching

History-Pointer Prefetching

g p ( ) i pp i d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

c ompute &ni+d directly from &ni (no ptr. d eref.)

ni ni+d

A
&ni &ni+d

History-Pointer Prefetching

Data-Linearization Prefetching

p pp d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

A=Add ress ge nera ting func tion

ni ni+d

g
– History-Pointer Prefetching
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Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

1

2 3
preorder(treeNode * t){
if (t != NULL){ 2 3

4 65 7

( ){
pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);

partial hit

8 10 12 149 11 13 15

p
preorder(t->right);

}
}

• Reasonably effective in practice
• However, little control over the prefetching distance

missmissmiss partial 
miss

hit
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History-Pointer Prefetching

• Add new pointer(s) to each node
– history-pointers are obtained from some recent traversal

1

2 3
6

12

youngest

1
2
4
8
9

4 5 7

3
11
10

oldest

FIFO (d=3)
6

9
5
10
11
3

8 9 11 1510 12 13 14
5

9

oldest 6

preorder

• Trade space & time for better control over prefetching distances

existing history-pointer

history-pointer being added

6 currently visiting

Carnegie Mellon

• Trade space & time for better control over prefetching distances
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Data-Linearization Prefetching

• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

1

2 3 preorder 

4 5 6 7

p
traversal

8 9 11 1510 12 13 14

1 2 4 8 9 10 11 12 7 145 3 13 151 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15
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Todd C. Mowry15-745: Data Prefetching 48



Summary of Prefetching Algorithms

Greedy History-Pointer Data-Linearization

Control over little more precise more preciseControl over 
Prefetching Distance

little more precise more precise

Applicability to 
Recursive Data 
St t s

any RDS revisited; changes 
only slowly

must have a major 
traversal order; 
h s l  sl lStructures changes only slowly

Overhead in 
Preparing Prefetch
Addresses

none space + time none in practice

Ease of 
Implementation

relatively 
straightforward

more  difficult more difficulty

• Greedy prefetching is the most widely applicable algorithm
– fully implemented in SUIF
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Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms

• Experimental Results

• ConclusionsConclusions
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Experimental Framework

Benchmarks
• Olden benchmark suite

– 10 pointer-intensive programs
– covers a wide range of recursive data structures

Simulation Model
• Detailed, cycle-by-cycle simulations
• MIPS R10000-like dynamically-scheduled superscalar

Compiler
• Implemented in the SUIF compiler
• Generates fully functional, optimized MIPS binaries
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Implementation of Our Prefetching Algorithms
Automated in the SUIF compiler

Schedule

Recognize

Greedy
Prefetches

ScheduleRecognize
RDS

Accesses

Schedule
History-Pointer

Prefetches

S h d lSchedule
Data-Linearization

Prefetches

• identify RDS types
• find recurrent pointer updates in 
loops and recursive procedures

• insert prefetches at the earliest   
possible places

• minimize prefetching overhead

Carnegie Mellon
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Performance of Compiler-Inserted Greedy Prefetching

load stall
O = Original

G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy

• Eliminates much of the stall time in programs with large load stall 
penalties
– half achieve speedups of 4% to 45%
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Coverage Factor

• coverage factor = pf hit + pf miss

nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
pf_hit = original D-cache misses that are prefetched and then hit in the D-cache

• coverage factor = pf_hit + pf_miss
• 7 out of 10 have coverage factors > 60%

– em3d, power, voronoi have many array or scalar load misses
• small pf miss fractions  effective prefetch scheduling

Carnegie Mellon

• small pf_miss fractions  effective prefetch scheduling
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Unnecessary Prefetches

100 = all unnecessary dynamic pfs

99 = exclude all static pfs with hit rates > 99%
95

90

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates
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Reducing Overhead Through Memory Feedback

load stall
store stall
inst. stall
busy

G = greedy prefetching
Fxx = greedy prefetching where static pfs with

hit rate > xx% are eliminated

• Eliminating static pfs with hit rate >95% speeds them up by 1-8%
• However, eliminating useful prefetches can hurt performance
• Memory feedback can potentially improve performance

hit rate > xx% are eliminated

Carnegie Mellon

• Memory feedback can potentially improve performance
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Performance of History-Pointer Prefetching

O = original

G = greedy prefetching

H = history-pointer prefetching

• Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

Health

40% speedup over greedy prefetching through:
– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case
Carnegie Mellon

Improved accuracy outweighs increased overhead in this case
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Performance of Data-Linearization Prefetching

O = original
G = greedy prefetching
D = data-linearization prefetching

• Creation order equals major traversal order in treeadd & perimeter
– hence data linearization is done without data restructuring

• 9% and 18% speedups over greedy prefetching through:9% and 18% speedups over greedy prefetching through:
– fewer unnecessary prefetches:

• 94%->78% in perimeter, 87%->81% in treeadd
– while maintaining good coverage factors:

• 100% >80% in perimeter  100% >93% in treeadd
Carnegie Mellon

• 100%->80% in perimeter, 100%->93% in treeadd
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Conclusions

• Propose 3 schemes to overcome the pointer-chasing problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations

Carnegie Mellon
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