
Lecture 27

Compiler Algorithms for Prefetching Data

f h f I. Prefetching for Arrays

II. Prefetching for Recursive Data Structures

Reading: ALSU 11.11.4
Advanced readings (optional):Advanced readings (optional)
T.C. Mowry, M. S. Lam and A. Gupta. “Design and Evaluation of a Compiler Algorithm for

Prefetching.” In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73.
C.-K. Luk and T. C. Mowry. “Compiler-Based Prefetching for Recursive Data Structures.” In

Proceedings of ASPLOS-VII Oct 1996 pp 222-233

Carnegie Mellon

Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.

Todd C. Mowry 15-745: Data Prefetching 1

The Memory Latency Problem

•  processor speed >>  memory speed
• caches are not a panacea

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 2

Uniprocessor Cache Performance on Scientific Code

• Applications from SPEC, SPLASH, and NAS Parallel.
• Memory subsystem typical of MIPS R4000 (100 MHz):

8K / 256K di t d h 32 b t li– 8K / 256K direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• 8 of 13 spend > 50% of time stalled for memory

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 3

Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results• Prefetching Compiler Algorithm and Results

• Implications of These Results

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 4

Coping with Memory Latency

Reduce Latency:

– Locality Optimizationsy p
• reorder iterations to improve cache reuse

Tolerate Latency:y

– Prefetching
• move data close to the processor before it is needed

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 5

Tolerating Latency Through Prefetching
Without Prefetching With Prefetching

Time
Prefetch A
Prefetch B

Load A Load A
Load B

Fetch A
Fetch B

Load B

Fetch A
Load B

Load B

Fetch B Executing Instructions

Stalled Waiting for Data

• overlap memory accesses with computation and other accesses

Carnegie Mellon

p y p

Todd C. Mowry15-745: Data Prefetching 6

Types of Prefetching

Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads:
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 7

Prefetching Research Goals

• Domain of Applicability

• Performance Improvement• Performance Improvement
– maximize benefit
– minimize overhead

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 8

Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis: what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 9

Reducing Prefetching Overhead

• instructions to issue prefetches
• extra demands on memory system

Hit Rates for Array Accesses

• important to minimize unnecessary prefetches

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 10

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 11

Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
l– set of inner loops where the data accessed by an iteration is

expected to fit within the cache

3. Find data locality:. F n ata ca ty
– reuse  localized iteration space  locality

Carnegie Mellon
15-745: Data Prefetching Todd C. Mowry12

Data Locality Example

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Hit
Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]

j j j

Spatial Temporal Group

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 13

Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100

• Map n loop indices into d array indices via array indexing function:

A[i][j] = B[j][0] + B[j+1][0];

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 14

Finding Temporal Reuse

• Temporal reuse occurs between iterations and whenever:p

• Rather than worrying about individual values of and , we say
that reuse occurs along direction vector when:that reuse occurs along direction vector when:

• Solution: compute the nullspace of H

Carnegie Mellon
15-745: Data Prefetching Todd C. Mowry15

Temporal Reuse Example

for i = 0 to 2
for j = 0 to 100

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

for j 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

1 j1 2 j2

• True whenever j1 = j2, and regardless of the difference between
i and ii1 and i2.
– i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 16

Localized Iteration Space

• Given finite cache, when does reuse result in locality?Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0]; A[i][j] = B[j][0] + B[j+1][0];

i

B[j+1][0]

i

B[j+1][0]

j

B[j+1][0]

j

B[j+1][0]

Localized: both i and j loops Localized: j loop only

• Localized if accesses less data than effective cache size

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching

• Localized if accesses less data than effective cache size

17

Computing Locality

• Reuse Vector Space  Localized Vector Space  Locality Vector Spacep p y p

• Example: for i = 0 to 2
for j = 0 to 100

• If both loops are localized:
{(1 0)} {(1 0) (0 1)} {(1 0)}

A[i][j] = B[j][0] + B[j+1][0];

– span{(1,0)}  span{(1,0),(0,1)}  span{(1,0)}
– i.e. temporal reuse does result in temporal locality

f l h l l l d• If only the innermost loop is localized:
– span{(1,0)}  span{(0,1)}  span{}
– i.e. no temporal locality

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 18

Prefetch Predicate

Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

Example: for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0[i] none[]=[][j] (j mod 2) 0

B[j+1][0] i = 0

[ij] spatial[]=

[ij] temporal
none[]=

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 19

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 20

Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large• Suppress transformations when loops become too large
– avoid code explosion

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 21

Software Pipelining

where l = memory latency s = shortest path through loop body

Iterations Ahead =  l
s

where l = memory latency, s = shortest path through loop body

O i i l L
Software Pipelined Loop

(5 it ti h d)

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop

for (i = 0; i<5; i++) /* Prolog */
prefetch(&a[i]);

(5 iterations ahead)

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);
a[i] = 0;

}}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 22

Example Revisited

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);

Code with Prefetching

p ([j][]);
prefetch(&A[0][j+1]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];

Cache Hit
Cache Miss i = 0

A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {

i
A[i][j]

for (i = 1; i < 3; i++) {
prefetch(&A[i][0]);
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+7]);
A[i][j] = B[j][0] + B[j+1][0];
[i][j 1] [j 1][0] [j 2][0]

j

B[j+1][0]
i > 0 A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

i
i > 0

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 23

j

Experimental Framework (Uniprocessor)

Architectural Extensions:
– Prefetching support:

l k f h• lockup-free caches
• 16-entry prefetch issue buffer
• prefetch directly into both levels of cache

Contention:– Contention:
• memory pipelining rate = 1 access every 20 cycles
• primary cache tag fill = 4 cycles

– Misses get priority over prefetchesMisses get priority over prefetches

Simulator:
– detailed cache simulator driven by pixified object codedetailed cache simulator driven by pixified object code.

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 24

Experimental Results (Dense Matrix Uniprocessor)

• Performance of Prefetching Algorithm
– Locality AnalysisL y y
– Software Pipelining

• Interaction with Locality Optimizer

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 25

Performance of Prefetching Algorithm

 ll d d b 50% 90%

(N = No Prefetching, S = Selective Prefetching)

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 26

Effectiveness of Locality Analysis

S l ti I di i i t f t hi

(I = Indiscriminate Prefetching, S = Selective Prefetching)

Selective vs. Indiscriminate prefetching:
• similar reduction in memory stalls
• significantly less overhead
• 6 of 13 have speedups over 20%

Carnegie Mellon

• 6 of 13 have speedups over 20%

Todd C. Mowry15-745: Data Prefetching 27

Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

Indiscriminate
S l tiSelective

• fewer unnecessary prefetchesfewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 28

Effectiveness of Software Pipelining

Original Miss Breakdown

• Large pf miss  ineffective scheduling• Large pf-miss  ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 29

Interaction with Locality Optimizer

(Cache Blocking) (Loop Interchange)

• locality optimizations reduce number of cache misses
• prefetching hides any remaining latency
• best performance through a combination of both

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 30

Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch

sum + A[index[i]];

– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 31

Software Pipelining for Indirections

f (i 0 i<100 i++)

Original Loop
f (i 0 i<5 i++) /* P l 1 */

Software Pipelined Loop
(5 iterations ahead)

for (i = 0; i<100; i++)
sum += A[index[i]];

for (i = 0; i<5; i++) /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) { /* Prolog 2 */
prefetch(&index[i+5]);p
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++) /* Epilog 2 */

sum += A[index[i]];

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 32

Indirection Prefetching Results

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 33

Summary of Results

Dense Matrix Code:
– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively
– significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 34

Prefetching for Arrays: Concluding Remarks

• Demonstrated that software prefetching is effective
– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient memory bandwidth

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 35

Part II: Prefetching for Recursive Data StructuresPart II: Prefetching for Recursive Data Structures

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 36

Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structures
– especially in non-numeric programs

• Cache miss behavior is a concern because:• Cache miss behavior is a concern because:
– large data set with respect to the cache size
– temporal locality may be poor

littl ti l l lit ti l d d– little spatial locality among consecutively-accessed nodes

Goal:
A t ti C il B d P f t hi f R i D t St t• Automatic Compiler-Based Prefetching for Recursive Data Structures

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 37

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms

• Experimental Results

• ConclusionsConclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 38

Scheduling Prefetches for Recursive Data Structures

n

currently visiting

n n n

p
want to prefetch

ni ni+1 ni+2 ni+3

Lp = &n0
loading a node

work()

W

while (p){
work(p ->data);
p = p->next ;

}

loa d *p here

W

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

}

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 39

Performance without Prefetching
Time

while (p){
work(p ->data);

Wi+1

ni

ni+1 Li+1

Li Wi

p = p->next;
}

i+1

ni+2

i 1

Li+2 Wi+2

ni+3 Li+3 Wi+3

 computa tion ra te = 1/ (L+W)

computation rate = 1 / (L+W)

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 40

Prefetching One Node AheadPrefetching One Node Ahead

while (p){
pf(p->next);

k(d t)

Time

pre fetc h

ni

ni+1

Wi

Wi+1

work(p ->data);
p = p->next;

}

Li

Li+1

visiting

ni+2

n

Wi+2

Wi 3

pf(pi->next)
Li+2

L
Lk load ing nk

ni+3 Wi+3Li+3work(nk)Wk

da ta d epend enc e

 computation rate = 1/ L
• Comp uta tio n is overla p ped with memory a c c esses• Computation is overlapped with memory accesses

computation rate = 1/L

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 41

Prefetching Three Nodes AheadPrefetching Three Nodes AheadPrefetching Three Nodes Ahead

Time

while (p){
pf(p->next->next->next);
work(p ->data);

> t

ni+1 Wi+1

Li

Li+1

visiting
ni Wi

p = p->next;
}

L

pre fetc h

ni+2

ni+3

Li+2

Li+3

Wi+2

Wi+3

pf(pi->next->next->next)

computation rate does not improve (still = 1/ L)!computation rate does not improve (still = 1/L)! computation rate does not improve (still 1/ L)!

Pointer-Chasing Problem:
any scheme which follows the pointer chain is limited to a rate of 1/L

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 42

Our Goal: Fully Hide LatencyOur Goal: Fully Hide LatencyOur Goal: Fully Hide Latency

while (p){

Time

ni

ni+1

Li Wi

Li+1 Wi+1

pf(&ni+3);
work(p ->data);
p = p->next;

}

visiting

ni+2 Li+2 Wi+2

}

pre fetc h ni+3 Li+3 Wi+3

pf(&ni+3)

pre fetc h

 achieves the fastest possible computa tion rate of 1/ W• achieves the fastest possible computation rate of 1/W

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 43

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms
– Greedy Prefetching
– History-Pointer Prefetching

D t Li i ti P f t hi– Data-Linearization Prefetching

• Experimental Results

• ConclusionsConclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 44

Overcoming the Pointer-Chasing ProblemOvercoming the Pointer-Chasing Problem
Key:

 ni needs to know &ni+d without referencing the d-1 intermediate nodes
Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Our proposals:
use existing po inter(s) in n i to a pproximate &ni+d

an existing p ointer

Greedy Prefetching

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

a dd new po inter(s) to ni to a pproximate &ni+d

ni ni+d

n

a new p ointer

Greedy Prefetching

History-Pointer Prefetching

g p () i pp i d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

c ompute &ni+d directly from &ni (no ptr. d eref.)

ni ni+d

A
&ni &ni+d

History-Pointer Prefetching

Data-Linearization Prefetching

p pp d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

A=Add ress ge nera ting func tion

ni ni+d

g
– History-Pointer Prefetching

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 45

Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

1

2 3
preorder(treeNode * t){
if (t != NULL){ 2 3

4 65 7

(){
pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);

partial hit

8 10 12 149 11 13 15

p
preorder(t->right);

}
}

• Reasonably effective in practice
• However, little control over the prefetching distance

missmissmiss partial
miss

hit

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 46

History-Pointer Prefetching

• Add new pointer(s) to each node
– history-pointers are obtained from some recent traversal

1

2 3
6

12

youngest

1
2
4
8
9

4 5 7

3
11
10

oldest

FIFO (d=3)
6

9
5
10
11
3

8 9 11 1510 12 13 14
5

9

oldest 6

preorder

• Trade space & time for better control over prefetching distances

existing history-pointer

history-pointer being added

6 currently visiting

Carnegie Mellon

• Trade space & time for better control over prefetching distances

Todd C. Mowry15-745: Data Prefetching 47

Data-Linearization Prefetching

• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

1

2 3 preorder

4 5 6 7

p
traversal

8 9 11 1510 12 13 14

1 2 4 8 9 10 11 12 7 145 3 13 151 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 48

Summary of Prefetching Algorithms

Greedy History-Pointer Data-Linearization

Control over little more precise more preciseControl over
Prefetching Distance

little more precise more precise

Applicability to
Recursive Data
St t s

any RDS revisited; changes
only slowly

must have a major
traversal order;
h s l sl lStructures changes only slowly

Overhead in
Preparing Prefetch
Addresses

none space + time none in practice

Ease of
Implementation

relatively
straightforward

more difficult more difficulty

• Greedy prefetching is the most widely applicable algorithm
– fully implemented in SUIF

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 49

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms• Three Prefetching Algorithms

• Experimental Results

• ConclusionsConclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 50

Experimental Framework

Benchmarks
• Olden benchmark suite

– 10 pointer-intensive programs
– covers a wide range of recursive data structures

Simulation Model
• Detailed, cycle-by-cycle simulations
• MIPS R10000-like dynamically-scheduled superscalar

Compiler
• Implemented in the SUIF compiler
• Generates fully functional, optimized MIPS binaries

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 51

Implementation of Our Prefetching Algorithms
Automated in the SUIF compiler

Schedule

Recognize

Greedy
Prefetches

ScheduleRecognize
RDS

Accesses

Schedule
History-Pointer

Prefetches

S h d lSchedule
Data-Linearization

Prefetches

• identify RDS types
• find recurrent pointer updates in
loops and recursive procedures

• insert prefetches at the earliest
possible places

• minimize prefetching overhead

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 52

loops and recursive procedures p g

Performance of Compiler-Inserted Greedy Prefetching

load stall
O = Original

G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy

• Eliminates much of the stall time in programs with large load stall
penalties
– half achieve speedups of 4% to 45%

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 53

Coverage Factor

• coverage factor = pf hit + pf miss

nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
pf_hit = original D-cache misses that are prefetched and then hit in the D-cache

• coverage factor = pf_hit + pf_miss
• 7 out of 10 have coverage factors > 60%

– em3d, power, voronoi have many array or scalar load misses
• small pf miss fractions  effective prefetch scheduling

Carnegie Mellon

• small pf_miss fractions  effective prefetch scheduling

Todd C. Mowry15-745: Data Prefetching 54

Unnecessary Prefetches

100 = all unnecessary dynamic pfs

99 = exclude all static pfs with hit rates > 99%
95

90

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 55

Reducing Overhead Through Memory Feedback

load stall
store stall
inst. stall
busy

G = greedy prefetching
Fxx = greedy prefetching where static pfs with

hit rate > xx% are eliminated

• Eliminating static pfs with hit rate >95% speeds them up by 1-8%
• However, eliminating useful prefetches can hurt performance
• Memory feedback can potentially improve performance

hit rate > xx% are eliminated

Carnegie Mellon

• Memory feedback can potentially improve performance

Todd C. Mowry15-745: Data Prefetching 56

Performance of History-Pointer Prefetching

O = original

G = greedy prefetching

H = history-pointer prefetching

• Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

Health

40% speedup over greedy prefetching through:
– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case
Carnegie Mellon

Improved accuracy outweighs increased overhead in this case

Todd C. Mowry15-745: Data Prefetching 57

Performance of Data-Linearization Prefetching

O = original
G = greedy prefetching
D = data-linearization prefetching

• Creation order equals major traversal order in treeadd & perimeter
– hence data linearization is done without data restructuring

• 9% and 18% speedups over greedy prefetching through:9% and 18% speedups over greedy prefetching through:
– fewer unnecessary prefetches:

• 94%->78% in perimeter, 87%->81% in treeadd
– while maintaining good coverage factors:

• 100% >80% in perimeter 100% >93% in treeadd
Carnegie Mellon

• 100%->80% in perimeter, 100%->93% in treeadd

Todd C. Mowry15-745: Data Prefetching 58

Conclusions

• Propose 3 schemes to overcome the pointer-chasing problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 59

