
1

Lecture 27

Compiler Algorithms for Prefetching DataCompiler Algorithms for Prefetching Data

I. Prefetching for Arrays

II. Prefetching for Recursive Data Structures

Reading: ALSU 11 11 4

Carnegie Mellon

Reading: ALSU 11.11.4
Advanced readings (optional):
T.C. Mowry, M. S. Lam and A. Gupta. “Design and Evaluation of a Compiler Algorithm for

Prefetching.” In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73.
C.-K. Luk and T. C. Mowry. “Compiler-Based Prefetching for Recursive Data Structures.” In

Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.

Todd C. Mowry 15-745: Data Prefetching 1

The Memory Latency Problem

Carnegie Mellon

•  processor speed >>  memory speed
• caches are not a panacea

Todd C. Mowry15-745: Data Prefetching 2

Uniprocessor Cache Performance on Scientific Code

• Applications from SPEC, SPLASH, and NAS Parallel.
M b t t i l f MIPS R4000 (100 MH)

Carnegie Mellon

• Memory subsystem typical of MIPS R4000 (100 MHz):
– 8K / 256K direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• 8 of 13 spend > 50% of time stalled for memory

Todd C. Mowry15-745: Data Prefetching 3

Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results

• Implications of These Results

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 4

2

Coping with Memory Latency

Reduce Latency:

– Locality Optimizations
• reorder iterations to improve cache reusep

Tolerate Latency:

– Prefetching
• move data close to the processor before it is needed

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 5

Tolerating Latency Through Prefetching
Without Prefetching With Prefetching

Time
Prefetch A
Prefetch B

Fetch A
Fetch B

Load A

Load B

Fetch A

Fetch B

Load A
Load B

Fetch B

Executing Instructions

Carnegie Mellon

• overlap memory accesses with computation and other accesses

Todd C. Mowry15-745: Data Prefetching 6

Stalled Waiting for Data

Types of Prefetching

Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads:
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Carnegie Mellon

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage

Todd C. Mowry15-745: Data Prefetching 7

Prefetching Research Goals

• Domain of Applicability

• Performance Improvement
i i b fit– maximize benefit

– minimize overhead

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 8

3

Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis: what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

Carnegie Mellon

– maximize effectiveness
– minimize overhead per prefetch

Todd C. Mowry15-745: Data Prefetching 9

Reducing Prefetching Overhead

• instructions to issue prefetches
• extra demands on memory system

Hit Rates for Array AccessesHit Rates for Array Accesses

Carnegie Mellon

• important to minimize unnecessary prefetches

Todd C. Mowry15-745: Data Prefetching 10

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

/Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 11

Steps in Locality Analysis

1. Find data reuse
– if caches were infinitely large, we would be finishedy g ,

2. Determine “localized iteration space”
– set of inner loops where the data accessed by an iteration is

expected to fit within the cache

3. Find data locality:
– reuse  localized iteration space  locality

Carnegie Mellon
15-745: Data Prefetching Todd C. Mowry12

4

Data Locality Example

for i = 0 to 2
for j = 0 to 100 Hit
A[i][j] = B[j][0] + B[j+1][0]; Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 13

j

Spatial

j

Temporal

j

Group

Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Map n loop indices into d array indices via array indexing function:

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 14

• Temporal reuse occurs between iterations and whenever:

Finding Temporal Reuse

• Rather than worrying about individual values of and , we say
that reuse occurs along direction vector when:

Carnegie Mellon
15-745: Data Prefetching

• Solution: compute the nullspace of H

Todd C. Mowry15

Temporal Reuse Example

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j = j and regardless of the difference between

A[i][j] B[j][0] + B[j+1][0];

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching

• True whenever j1 = j2, and regardless of the difference between
i1 and i2.
– i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

16

5

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching

• Localized if accesses less data than effective cache size

j j

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

17

Computing Locality

• Reuse Vector Space  Localized Vector Space  Locality Vector Space

• Example:

• If both loops are localized:
– span{(1,0)}  span{(1,0),(0,1)}  span{(1,0)}
– i.e. temporal reuse does result in temporal locality

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching

• If only the innermost loop is localized:
– span{(1,0)}  span{(0,1)}  span{}
– i.e. no temporal locality

18

Prefetch Predicate

Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Example:

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 19

y

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij] none
spatial[]=

[ij] temporal
none[]=

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

/Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 20

6

Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

L li T P di L T f i

• Apply transformations recursively for nested loops

Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l

Carnegie Mellon

pp y y p

• Suppress transformations when loops become too large
– avoid code explosion

Todd C. Mowry15-745: Data Prefetching 21

Software Pipelining

where l = memory latency, s = shortest path through loop body

Iterations Ahead =  l
s

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop

for (i = 0; i<5; i++) /* Prolog */
prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);

Software Pipelined Loop
(5 iterations ahead)

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 22

a[i] = 0;
}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Example Revisited

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {

prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j+1]);

}

Code with Prefetching

for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {

A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {

prefetch(&A[i][0]);
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {

i

j

A[i][j]

Cache Hit
Cache Miss i = 0

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 23

j j j
prefetch(&A[i][j+7]);
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

i

j

B[j+1][0]
i > 0

Experimental Framework (Uniprocessor)

Architectural Extensions:
– Prefetching support:

• lockup-free caches
16 t f t h i b ff• 16-entry prefetch issue buffer

• prefetch directly into both levels of cache
– Contention:

• memory pipelining rate = 1 access every 20 cycles
• primary cache tag fill = 4 cycles

– Misses get priority over prefetches

Simulator:

Carnegie Mellon

Simulator:
– detailed cache simulator driven by pixified object code.

Todd C. Mowry15-745: Data Prefetching 24

7

Experimental Results (Dense Matrix Uniprocessor)

• Performance of Prefetching Algorithm
– Locality Analysis
– Software Pipeliningf p g

• Interaction with Locality Optimizer

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 25

Performance of Prefetching Algorithm

(N = No Prefetching, S = Selective Prefetching)

Carnegie Mellon

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%

Todd C. Mowry15-745: Data Prefetching 26

(g, g)

Effectiveness of Locality Analysis

(I = Indiscriminate Prefetching, S = Selective Prefetching)

Carnegie Mellon

Selective vs. Indiscriminate prefetching:
• similar reduction in memory stalls
• significantly less overhead
• 6 of 13 have speedups over 20%

Todd C. Mowry15-745: Data Prefetching 27

(g, g)

Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

Indiscriminate
Selective

Carnegie Mellon

• fewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)

Todd C. Mowry15-745: Data Prefetching 28

8

Effectiveness of Software Pipelining

Original Miss Breakdown

Carnegie Mellon

• Large pf-miss  ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache

Todd C. Mowry15-745: Data Prefetching 29

Interaction with Locality Optimizer

(Cache Blocking) (Loop Interchange)

Carnegie Mellon

• locality optimizations reduce number of cache misses
• prefetching hides any remaining latency
• best performance through a combination of both

Todd C. Mowry15-745: Data Prefetching 30

(Cache Blocking) (Loop Interchange)

Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 31

Software Pipelining for Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Original Loop
for (i = 0; i<5; i++) /* Prolog 1 */

prefetch(&index[i]);

Software Pipelined Loop
(5 iterations ahead)

[[]] p ([])

for (i = 0; i<5; i++) { /* Prolog 2 */
prefetch(&index[i+5]);
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 32

for (i = 90; i<95; i++) { / Epilog 1 /
prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++) /* Epilog 2 */

sum += A[index[i]];

9

Indirection Prefetching Results

Carnegie Mellon

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG

Todd C. Mowry15-745: Data Prefetching 33

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

Summary of Results

Dense Matrix Code:
– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively

%– significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 34

Prefetching for Arrays: Concluding Remarks

• Demonstrated that software prefetching is effective
– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient memory bandwidth

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 35

Part II: Prefetching for Recursive Data Structures

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 36

10

Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structuresg g
– especially in non-numeric programs

• Cache miss behavior is a concern because:
– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

G l

Carnegie Mellon

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data Structures

Todd C. Mowry15-745: Data Prefetching 37

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms

• Experimental Results

• Conclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 38

Scheduling Prefetches for Recursive Data Structures

ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency

p = &n0
while (p){

work(p ->data);
p = p->next ;

}

loa d *p here

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 39

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Performance without Prefetching

L W

Time

while (p){
work(p ->data);
p = p->next;

}

Wi+1

ni

ni+1

ni+2

ni+3

Li+1

Li Wi

Li+2 Wi+2

Li+3 Wi+3

}

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 40

 computa tion ra te = 1/ (L+W)

computation rate = 1 / (L+W)

11

Prefetching One Node Ahead

ni Wi

while (p){
pf(p->next);
work(p ->data);
p = p >next;Li

visiting

Time

Prefetching One Node Ahead

pre fetc h

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(pi->next)

p = p->next;
}

i

Li+1

Li+2

Li+3work(nk)Wk

Lk load ing nk

da ta d epend enc e

Carnegie Mellon

 computation rate = 1/ L
• Computa tio n is overlap ped with memory a c c esses

Todd C. Mowry15-745: Data Prefetching 41

• Computation is overlapped with memory accesses

computation rate = 1/L

Prefetching Three Nodes Ahead

Li
visiting

Time

ni Wi

while (p){
pf(p->next->next->next);
work(p ->data);
p = p->next;

}

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(pi->next->next->next)

Li+1

Li+2

Li+3

i

Wi+2

Wi+3

}
L

Carnegie Mellon

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:
any scheme which follows the pointer chain is limited to a rate of 1/L

Todd C. Mowry15-745: Data Prefetching 42

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L

Our Goal: Fully Hide Latency

ni Li Wi

while (p){
pf(&ni+3);visiting

Time

Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2 Wi+2

Li+3 Wi+3

work(p ->data);
p = p->next;

}

pf(&ni+3)

pre fetc h

Carnegie Mellon

 achieves the fastest possible computa tion rate of 1/ W

Todd C. Mowry15-745: Data Prefetching 43

• achieves the fastest possible computation rate of 1/W

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms
G d P f t hi– Greedy Prefetching

– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results

• Conclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 44

12

Overcoming the Pointer-Chasing Problem

Key:

Our proposals:

 ni needs to know &ni+d without referencing the d-1 intermediate nodes

Overcoming the Pointer-Chasing Problem

Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Our proposals:
use existing po inter(s) in n i to a pproximate &ni+d

a dd new po inter(s) to ni to a pproximate &ni+d

c ompute &ni+d directly from &ni (no ptr. d eref.)

ni ni+d

an exist ing p ointer

ni ni+d

a new p ointer

A
&ni &ni+d

Greedy Prefetching

History-Pointer Prefetching

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

Carnegie Mellon

c ompute &ni+d directly from &ni (no ptr. d eref.) A

A=Add ress ge nera ting func tion

ni ni+d

Data-Linearization Prefetching• compute &ni+d directly from &ni (no ptr deref)
– History-Pointer Prefetching

Todd C. Mowry15-745: Data Prefetching 45

Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

1

2 3

4

8 10

6

12 14

5

9 11

7

13 15

preorder(treeNode * t){
if (t != NULL){

pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

Carnegie Mellon

• Reasonably effective in practice
• However, little control over the prefetching distance

Todd C. Mowry15-745: Data Prefetching 46

missmissmiss partial
miss

hit

10 12 1413 15}

History-Pointer Prefetching

• Add new pointer(s) to each node
– history-pointers are obtained from some recent traversal

112 1
2

8 9 11 15

2 3

4 5 7

10 12 13 14

3
11
10

6

5
9

youngest

oldest

FIFO (d=3)
6

2
4
8
9
5
10
11
3
6

d

Carnegie Mellon

• Trade space & time for better control over prefetching distances

Todd C. Mowry15-745: Data Prefetching 47

existing history-pointer

history-pointer being added

6 currently visiting

preorder

Data-Linearization Prefetching

• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

1

8 9 11 15

2 3

4 5 6 7

10 12 13 14

preorder
traversal

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 48

1 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15

13

Summary of Prefetching Algorithms

Greedy History-Pointer Data-Linearization

Control over
Prefetching Distance

little more precise more precise

Applicability to
Recursive Data
Structures

any RDS revisited; changes
only slowly

must have a major
traversal order;

changes only slowly
Overhead in
Preparing Prefetch
Addresses

none space + time none in practice

Ease of
Implementation

relatively
straightforward

more difficult more difficulty

Carnegie Mellon

• Greedy prefetching is the most widely applicable algorithm
– fully implemented in SUIF

Todd C. Mowry15-745: Data Prefetching 49

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms

• Experimental Results

• Conclusions

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 50

Experimental Framework

Benchmarks
• Olden benchmark suite

– 10 pointer-intensive programs
– covers a wide range of recursive data structures

Simulation Model
• Detailed, cycle-by-cycle simulations
• MIPS R10000-like dynamically-scheduled superscalar

Compiler

Carnegie Mellon

• Implemented in the SUIF compiler
• Generates fully functional, optimized MIPS binaries

Todd C. Mowry15-745: Data Prefetching 51

Implementation of Our Prefetching Algorithms
Automated in the SUIF compiler

Schedule
Greedy

Recognize
RDS

Accesses

Prefetches

Schedule
History-Pointer

Prefetches

Schedule
Data-Linearization

Prefetches

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 52

Prefetches

• identify RDS types
• find recurrent pointer updates in
loops and recursive procedures

• insert prefetches at the earliest
possible places

• minimize prefetching overhead

14

Performance of Compiler-Inserted Greedy Prefetching

O = Original

G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy

Carnegie Mellon

• Eliminates much of the stall time in programs with large load stall
penalties
– half achieve speedups of 4% to 45%

Todd C. Mowry15-745: Data Prefetching 53

y

Coverage Factor

nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
pf_hit = original D-cache misses that are prefetched and then hit in the D-cache

Carnegie Mellon

• coverage factor = pf_hit + pf_miss
• 7 out of 10 have coverage factors > 60%

– em3d, power, voronoi have many array or scalar load misses
• small pf_miss fractions effective prefetch scheduling

Todd C. Mowry15-745: Data Prefetching 54

p _ g p

Unnecessary Prefetches

100 = all unnecessary dynamic pfs

99 = exclude all static pfs with hit rates > 99%
95

90

Carnegie Mellon

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates

Todd C. Mowry15-745: Data Prefetching 55

99 exclude all static pfs with hit rates > 99% 90

Reducing Overhead Through Memory Feedback

load stall
store stall
inst. stall
busy

G = greedy prefetching

Carnegie Mellon

• Eliminating static pfs with hit rate >95% speeds them up by 1-8%
• However, eliminating useful prefetches can hurt performance
• Memory feedback can potentially improve performance

Todd C. Mowry15-745: Data Prefetching 56

Fxx = greedy prefetching where static pfs with
hit rate > xx% are eliminated

15

Performance of History-Pointer Prefetching

O = original

• Applicable because a list structure does not change over time

O original

G = greedy prefetching

H = history-pointer prefetching

Health

Carnegie Mellon

Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case

Todd C. Mowry15-745: Data Prefetching 57

Performance of Data-Linearization Prefetching

O = original
G d f t hi

• Creation order equals major traversal order in treeadd & perimeter
hence data linearization is done without data restructuring

G = greedy prefetching
D = data-linearization prefetching

Carnegie Mellon

– hence data linearization is done without data restructuring
• 9% and 18% speedups over greedy prefetching through:

– fewer unnecessary prefetches:
• 94%->78% in perimeter, 87%->81% in treeadd

– while maintaining good coverage factors:
• 100%->80% in perimeter, 100%->93% in treeadd

Todd C. Mowry15-745: Data Prefetching 58

Conclusions

• Propose 3 schemes to overcome the pointer-chasing problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations

Carnegie Mellon
Todd C. Mowry15-745: Data Prefetching 59

