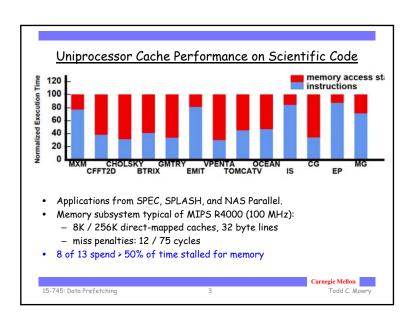
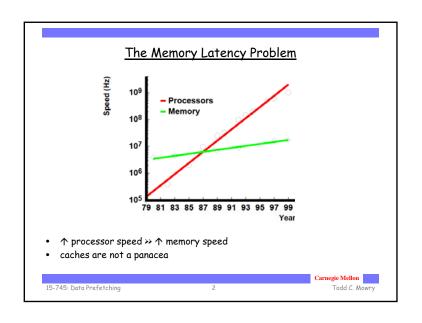
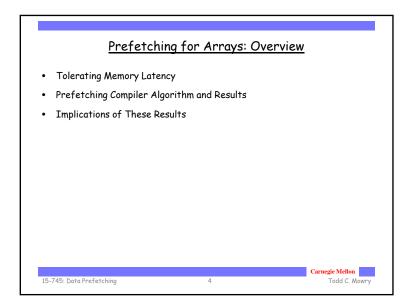
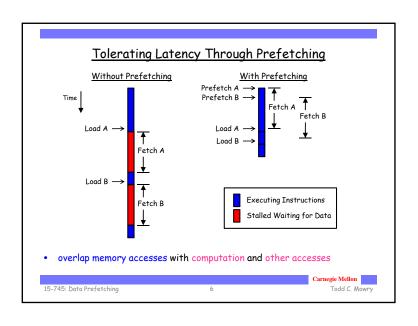
Lecture 27 Compiler Algorithms for Prefetching Data I. Prefetching for Arrays II. Prefetching for Recursive Data Structures Reading: ALSU 11.11.4 Advanced readings (optional): T.C. Mowry, M. S. Lam and A. Gupta. "Design and Evaluation of a Compiler Algorithm for Prefetching." In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73. C.-K. Luk and T. C. Mowry. "Compiler-Based Prefetching for Recursive Data Structures." In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233. Carnegie Mellon

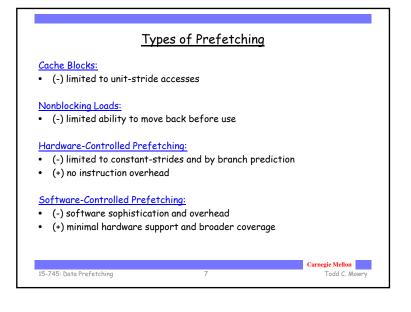




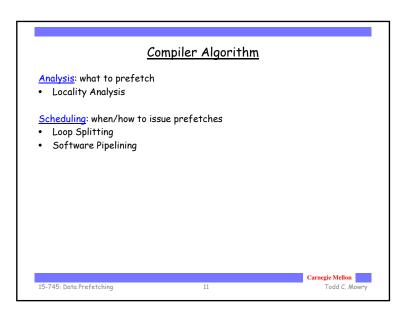


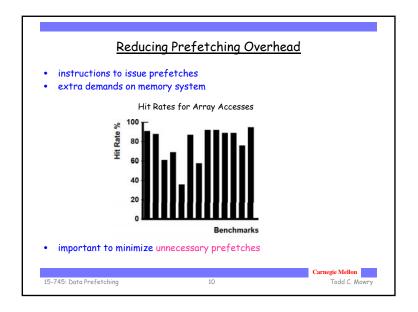
Coping with Memory Latency Reduce Latency: - Locality Optimizations • reorder iterations to improve cache reuse Tolerate Latency: - Prefetching • move data close to the processor before it is needed

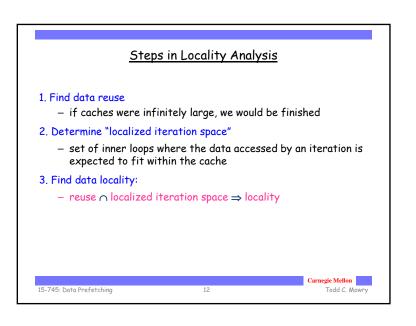




Prefetching Concepts possible only if addresses can be determined ahead of time coverage factor = fraction of misses that are prefetched unnecessary if data is already in the cache effective if data is in the cache when later referenced Analysis: what to prefetch — maximize coverage factor — minimize unnecessary prefetches Scheduling: when/how to schedule prefetches — maximize effectiveness — minimize overhead per prefetch Carnegie Mellon 15-745: Data Prefetching 9 Carnegie Mellon Todd C. Mowry







Data Locality Example for i = 0 to 2 for j = 0 to 100 A[i][j] = B[j][0] + B[j+1][0];Miss A[i][j] B[j+1][0] B[j][0] i • 0 • 0 • 0 • 0 i 00000000 i 0000000 0000000 0000000 • • • • • • • • ••••• • 0 0 0 0 0 0 0 → Temporal Spatial Group Carnegie Mellon 15-745: Data Prefetching Todd C. Mowry

Finding Temporal Reuse

• Temporal reuse occurs between iterations $\vec{\imath}_1$ and $\vec{\imath}_2$ whenever:

$$H\vec{i}_1 + \vec{c} = H\vec{i}_2 + \vec{c}$$

 $H(\vec{i}_1 - \vec{i}_2) = \vec{0}$

• Rather than worrying about individual values of \vec{i}_1 and \vec{i}_2 we say that reuse occurs along direction vector \vec{r} when:

$$H(\vec{r}) = \vec{0}$$

• Solution: compute the *nullspace* of *H*

15-745: Data Prefetching 15

Carnegie Mellon
Todd C. Mowry

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

$$\begin{split} \vec{f}(\vec{\imath}) &= H\vec{\imath} + \vec{c} \\ \text{A[i][j]} &= \text{A}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \\ \text{B[j][0]} &= \text{B}\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \\ \text{B[j+1][0]} &= \text{B}\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \end{split}$$

15-745: Data Prefetching

Carneg

Todd C. Mowry

Temporal Reuse Example

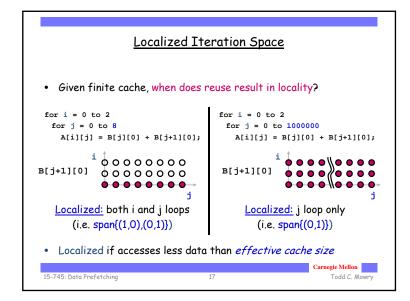
• Reuse between iterations (i_1, j_1) and (i_2, j_2) whenever:

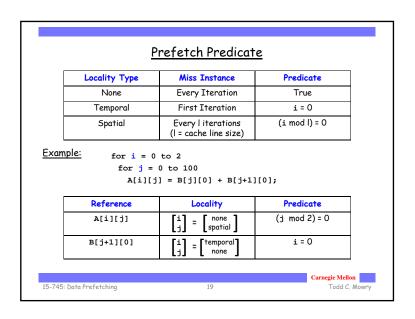
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_2 \\ j_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- True whenever $j_1 = j_2$, and regardless of the difference between i_1 and i_2 .
 - i.e. whenever the difference lies along the nullspace of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, which is span{(1,0)} (i.e. the outer loop).

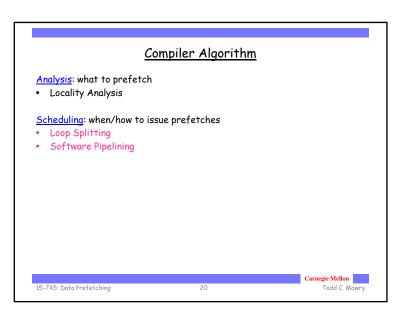
15-745: Data Prefetching

Carnegie Mellon
Todd C. Mowry





Computing Locality Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space Example: for i = 0 to 2 for j = 0 to 100 A[i][j] = B[j][0] + B[j+1][0]; If both loops are localized: - span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)} - i.e. temporal reuse does result in temporal locality If only the innermost loop is localized: - span{(1,0)} ∩ span{(0,1)} ⇒ span{} - i.e. no temporal locality



Loop Splitting

- Decompose loops to isolate cache miss instances
 - cheaper than inserting IF statements

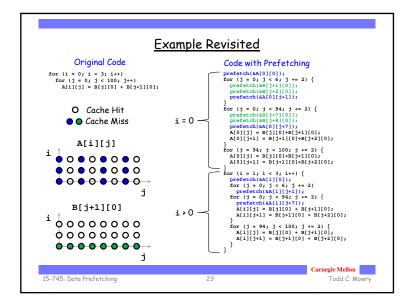
Locality Type	Predicate	Loop Transformation
None	True	None
Temporal	i = 0	Peel loop i
Spatial	(i mod l) = 0	Unroll loop i by l

- · Apply transformations recursively for nested loops
- Suppress transformations when loops become too large
 - avoid code explosion

15-745: Data Prefetching

21

Carnegie Mellon
Todd C. Mowry



```
Software Pipelining
                         Iterations Ahead = \left[\frac{1}{4}\right]
      where /= memory latency, s = shortest path through loop body
                                  Software Pipelined Loop
     Original Loop
                                    (5 iterations ahead)
 for (i = 0; i<100; i++)
                               for (i = 0; i < 5; i++)
                                                              /* Prolog */
    a[i] = 0;
                                   prefetch(&a[i]);
                                for (i = 0; i<95; i++) { /* Steady State*/
                                   prefetch(&a[i+5]);
                                   a[i] = 0;
                                for (i = 95; i<100; i++) /* Epilog */
                                   a[i] = 0;
                                                              Carnegie Mellon
                                                                  Todd C. Mowry
15-745: Data Prefetching
                                      22
```

Experimental Framework (Uniprocessor)

Architectural Extensions:

- Prefetching support:
 - lockup-free caches
 - 16-entry prefetch issue buffer
 - prefetch directly into both levels of cache
- Contention:
 - memory pipelining rate = 1 access every 20 cycles
 - primary cache tag fill = 4 cycles
- Misses get priority over prefetches

Simulator:

- detailed cache simulator driven by pixified object code.

15-745: Data Prefetching

Carnegie Mellon

Todd C. Mowry

Experimental Results (Dense Matrix Uniprocessor) Performance of Prefetching Algorithm Locality Analysis Software Pipelining Interaction with Locality Optimizer Carnegie Mellon 15-745: Data Prefetching



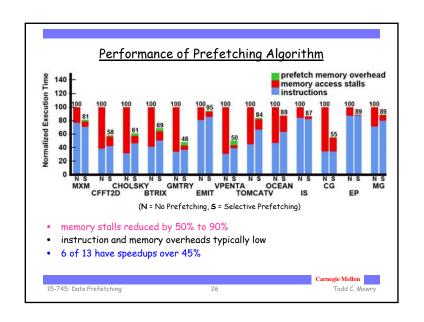
27

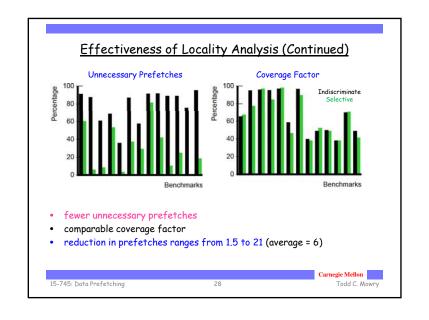
Carnegie Mellon

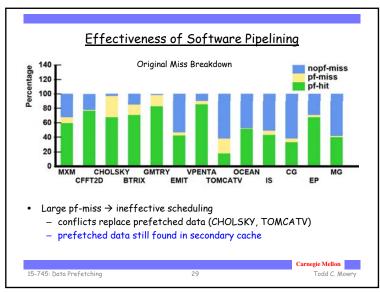
Todd C. Mowry

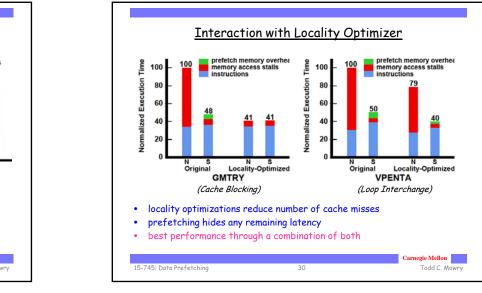
• 6 of 13 have speedups over 20%

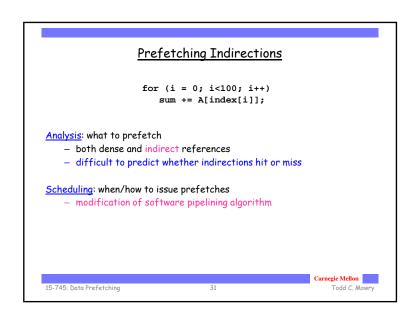
15-745: Data Prefetching



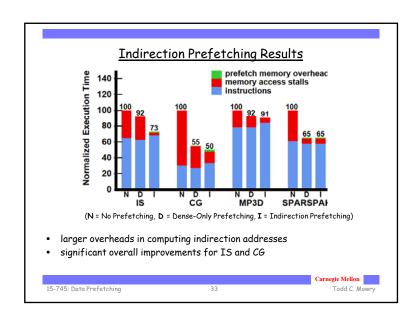




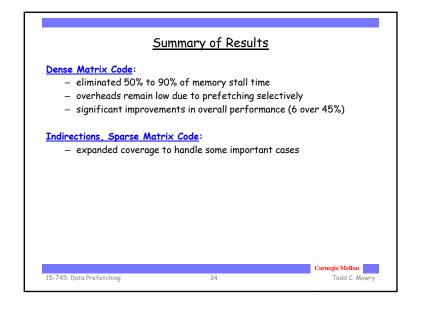


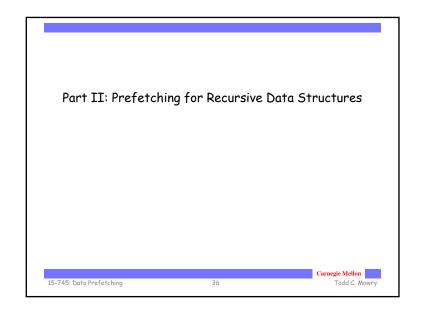


```
Software Pipelining for Indirections
                                  Software Pipelined Loop
     Original Loop
                                     (5 iterations ahead)
 for (i = 0; i<100; i++)
                                for (i = 0; i < 5; i++)
                                                           /* Prolog 1 */
    sum += A[index[i]];
                                   prefetch(&index[i]);
                                for (i = 0; i<5; i++) { /* Prolog 2 */
                                   prefetch(&index[i+5]);
                                   prefetch(&A[index[i]]);
                                for (i = 0; i<90; i++) { /* Steady State*/
                                   prefetch(&index[i+10]);
                                   prefetch(&A[index[i+5]]);
                                   sum += A[index[i]];
                                for (i = 90; i<95; i++) { /* Epilog 1 */
                                   prefetch(&A[index[i+5]]);
                                   sum += A[index[i]];
                                for (i = 95; i<100; i++) /* Epilog 2 */
                                   sum += A[index[i]];
                                                               Carnegie Mellon
15-745: Data Prefetching
                                                                   Todd C. Mowry
```

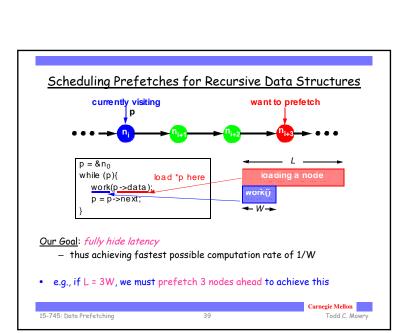


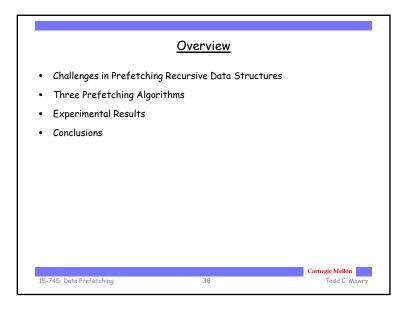
Prefetching for Arrays: Concluding Remarks • Demonstrated that software prefetching is effective - selective prefetching to eliminate overhead - dense matrices and indirections / sparse matrices - uniprocessors and multiprocessors • Hardware should focus on providing sufficient memory bandwidth

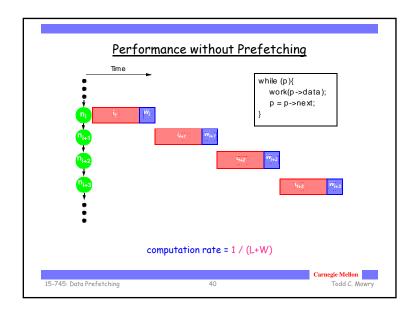


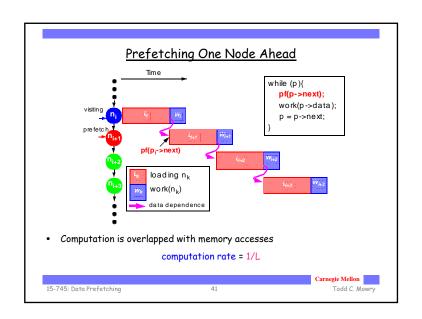


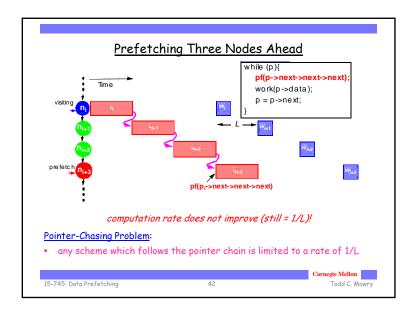
Pecursive Data Structures • Examples: - linked lists, trees, graphs, ... • A common method of building large data structures - especially in non-numeric programs • Cache miss behavior is a concern because: - large data set with respect to the cache size - temporal locality may be poor - little spatial locality among consecutively-accessed nodes Goal: • Automatic Compiler-Based Prefetching for Recursive Data Structures Carnegie Mellon 15-745: Data Prefetching Todd C. Mowry

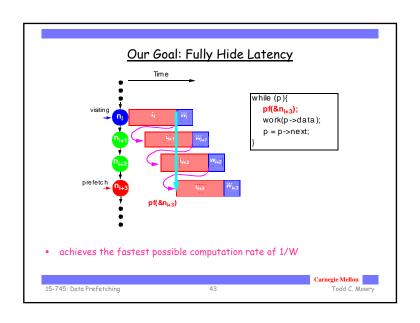


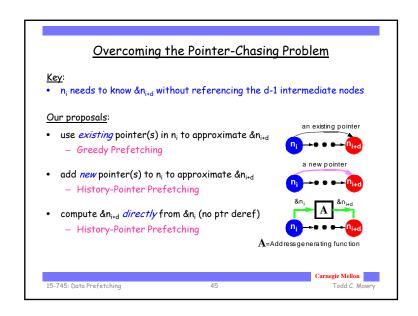


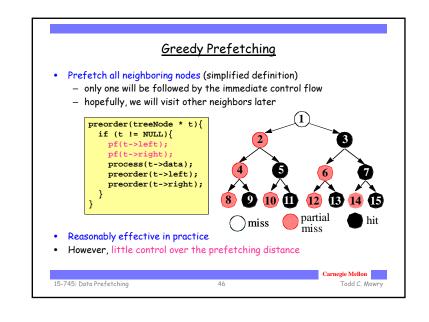


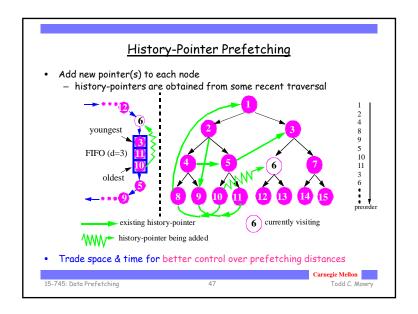


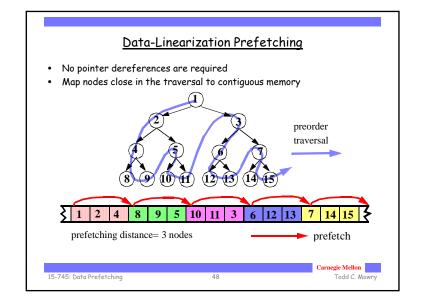












Summary of Prefetching Algorithms

	Greedy	History-Pointer	Data-Linearization
Control over Prefetching Distance	little	more precise	more precise
Applicability to Recursive Data Structures	any RDS	revisited; changes only slowly	must have a major traversal order; changes only slowly
Overhead in Preparing Prefetch Addresses	none	space + time	none in practice
Ease of Implementation	relatively straightforward	more difficult	more difficulty

- Greedy prefetching is the most widely applicable algorithm
 - fully implemented in SUIF

15-745: Data Prefetching

49

Carnegie Mellon
Todd C. Mowry

Experimental Framework

Benchmarks

- Olden benchmark suite
 - 10 pointer-intensive programs
 - covers a wide range of recursive data structures

Simulation Model

- Detailed, cycle-by-cycle simulations
- MIPS R10000-like dynamically-scheduled superscalar

Compiler

- Implemented in the SUIF compiler
- Generates fully functional, optimized MIPS binaries

15-745: Data Prefetching

51

Carnegie Mellon
Todd C. Mowry

Overview

- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
- Experimental Results
- Conclusions

15-745: Data Prefetching

50

rnegie Mellon Todd C. Mowry

