Data Dependence, Parallelization,
and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

I Carnegie Mellon [

Todd C. Mowry

e
Data Dependence

S A=10
S,: B=A+20
S, A=Q—D
S,: A=B/C

We define four types of data dependence.

e Flow (frue) dependence: a statement S; precedes a

statement S; in execution and S; computes a data value that
S; uses.

e Implies that S; must execute before S;.

58'S, (5,8'S, and S,8S,)

I Carnegie Mellon [

Optimizing Compilers: Parallelization -2- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
S, A=Q—D
S,: A=B/C

We define four types of data dependence.

e Anti dependence: a statement S; precedes a statement S; in
execution and S; uses a data value that S; computes.

e It implies that S; must be executed before S;.

58S (5,5°S,)

I Carnegie Mellon [

Optimizing Compilers: Parallelization -3- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
S A=C-D
S,: A=B/C

We define four types of data dependence.

e Output dependence: a statement S; precedes a statement S,

in execution and S; computes a data value that S; also
computes.

e It implies that S; must be executed before S;.

58S, (5,8°S, and S,8S,)

I Carnegie Mellon [

Optimizing Compilers: Parallelization -4- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
S, A=Q—D
S,: A=B/C

We define four types of data dependence.

e Input dependence: a statement S, precedes a statement S,
in execution and S; uses a data value that S; also uses.

e Does this imply that S; must execute before S;?

58S (5,3'S,)

I Carnegie Mellon [

Optimizing Compilers: Parallelization -5- Todd C. Mowry

e
Data Dependence (continued)

e The dependence is said fo flow from S; to S; because S;
precedes S; in execution.

e S, is said to be the source of the dependence. S; is said to
be the sink of the dependence.

e The only "true” dependence is flow dependence; it
represents the flow of data in the program.

e The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

S : A=10
S, B=A+20
S, Al=C-D
S,: A2 =B/C

I Carnegie Mellon [

Optimizing Compilers: Parallelization -6- Todd C. Mowry

Data Dependence (continued)

e Data dependence in a program may be represented using a
dependence graph 6=(V,E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S,: B=A+20

80

>
—+
n
H

Carnegie Mellon -

Optimizing Compilers: Parallelization -7- Todd C. Mowry

-
Value or Location?

e There are two ways a dependence is defined: value-oriented
or location-oriented.

S,: B=A+20
S;: A=C-D

I Carnegie Mellon [

Optimizing Compilers: Parallelization -8- Todd C. Mowry

Example 1

i=2 : i=3 : i=4
I I

doi=2,4 Si2] S,[2]1 S$4[3] S,[3]1 S44] S,[4]

Sia(i) = b(i) + (i)
Szi d(i) = a(i) pT | M | M
end do 0 I o i)

a2) a2) a@B) aB) a@) a4)

e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

e The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =,

S,8'S, or S&S,
I, Cornegie Mellon [

Optimizing Compilers: Parallelization -9- Todd C. Mowry

Example 2
i=2 ! i=3 ! i=4
doi=2,4 Si2] S2]1 Si[3] S,[311 S,[4] S,[4]
Sy ai) = b(i) + c(i)
S,o d(i) = a(i-1)
end do

e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence flows between instances of statements in
different iterations (loop-carried dependence).

e The dependence distance is 1. The direction is positive (<).
58S, or 58S,
N, arregie Metion [

Optimizing Compilers: Parallelization -10- Todd C. Mowry

Example 3

i=2 : i=3 : i=4
I I

doi=z2,4 Si2] S,[2]1 S$4[3] S,[3]1 S44] S,[4]

S;ooa(i) = b(i) + c(i) --- —v:r— --- _.i._ ---
S,o d(i) = a(i+1) T M M T
end do a2 aB) a3) a®) o) a)
e There is aninstance of S, that precedes an instance of S; in

execution and S, consumes data that S; produces.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence is loop-carried.
e The dependence distance is 1.
5,05 or 5,45

e Are you sure you know why it is S, §¢ S; even though S; appears
before S, in the code?

I Carnegie Mellon [

Optimizing Compilers: Parallelization -11- Todd C. Mowry

Example 4
doi=2,4 a(1,3) a(1,4) a(1,5)
doj=2,4 s[2,2] S[2,3] sgg,:ty
S: a(i,j)=a(i-1,j+1) @@ S
end do \ \ “:\:

end do

e Aninstance of S precedes
another instance of S and
S produces data that S
consumes.

a(2.2)/5 a(2,3)/5

e Sisboth source and sink.
e The dependence is loop-

carried.

e The dependence distance
is (1,-1).
S8..,S or SO _,S

I Carnegie Mellon [

Optimizing Compilers: Parallelization -12- Todd C. Mowry

Problem Formulation

e Consider the following perfect nest of depth d:

doI =L,V ar'r'ay r'efer'ence
do I2 = |1, U2
. T
doT,=L,U, /‘ f"().)
a(fl(I)/fZ(_»I)ll_»fm(I)) = _»
= a(gy (L), g,(), -, gn(D)) subscr'lp’r subscript
enddo position function
a or
enddo subscript
enddo expression
T=(lplp, 1)
L =(L.Ly, L) linear functions

I Carnegie Mellon [

Optimizing Compilers: Parallelization -13- Todd C. Mowry

Problem Formulation

e Dependence will exist if there exists two iteration vectors k
and j such that L <k < j<U and:
fi(k) = 9,(])

and = _ it
f2(k) = 92(J)

and
"t ® =0 ())
e That is:
nd f1(|{)— 91(33 =0
and (k) — 9.(j)=0

an

d .. _
fn(k)—9,(j) =0

I Carnegie Mellon [

Optimizing Compilers: Parallelization -14- Todd C. Mowry

Problem Formulation - Example

doi=2,4
S¢ooa(i) =b(i) + c(i)
S,o d(i) = a(i-1)
end do

Does there exist two iteration vectors i; and i,, such that
2 <i;<i, <4 and such that:

ip =i, -1?
Answer: yes; i;1=2 & i,=3 and i;=3 & i, =4.
Hence, there is dependencel

The dependence distance vector is i,-i; = 1.

The dependence direction vector is sign(1) = <.

I Carnegie Mellon [

Optimizing Compilers: Parallelization -15- Todd C. Mowry

Problem Formulation - Example

doi=2,4
S¢oa(i) = b(i) + c(i)
S,o d(i) = a(i+1)
end do

Does there exist two iteration vectors i; and i,, such that
2 <i;<i, <4 and such that:

i =i, +1?

Answer: yes; i;1=3 & i,=2 and i;=4 & i, =3. (But, but!).
Hence, there is dependencel

The dependence distance vector is i,-i; = -1.

The dependence direction vector is sign(-1) = >.

Is this possible?

I Carnegie Mellon [

Optimizing Compilers: Parallelization -16- Todd C. Mowry

]
Problem Formulation - Example

doi=1,10
Sioa(2%i) = b(i) + c(i)
S,o d(i) = a(2%i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i;<i, <10 and such that:

2%i; = 2%i, +1?
e Answer: no; 2%i, is even & 2%i,+1 is odd.

e Hence, there is no dependencel!

I Carnegie Mellon [

Optimizing Compilers: Parallelization -17- Todd C. Mowry

-
Problem Formulation

e Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraint!

e Analgorithm that determines if there exits two iteration
vectors k and] that satisfies these constraints is called a
dependence tester.

e The dependence distance vector is given by | - k.
e The dependence direction vector is give by sign(] - k).
e Dependence testing is NP-complete!

e A dependence test that reports dependence only when there
is dependence is said to be exact. Otherwise it is in-exact.

e A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be

assumed.
Carnegie Mellon -

Optimizing Compilers: Parallelization -18- Todd C. Mowry

T
Dependence Testers

Lamport’s Test.

GCD Test.

Banerjee's Inequalities.
Generalized GCD Test.
Power Test.

I-Test.

Omega Test.

Delta Test.

Stanford Test.

efc...

I Carnegie Mellon [

Optimizing Compilers: Parallelization -19- Todd C. Mowry

e
Lamport's Test

e Lamport's Test is used when there is a single index variable
in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

A(- b¥itey,)=
o= A, b¥it e,)

e The dependence problem: does there exist i; and i,, such
that L, <i; <i, < U, and such that

b*iy + ¢ = bYi + 62 or l2—i= "t 02
C1—C2
b
e The dependence distance is d = C1;C2 if L. <|d| <U.

e d>0 = ftrue dependence.
d=0 = loop independent dependence.
d <0 = anti dependence.

Optimizing Compilers: Parallelization -20- Todd C. Mowry

e There is integer solution if and only if is integer.

Lamport's Test - Example

doi=1,n
doj=1,n
S. a(i,j) = a(i-1,j+1)

/ enedngodo \

o i;=i,-1? o jj=j+1?
b=1,¢,=0;¢,=-1 b=1¢=0,¢,=1
Ci—C2 Ci—C2

=1 =-1
b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (§) is -1.

\ /

58 S or SO_,S

Carnegie Mellon -

Optimizing Compilers: Parallelization -21- Todd C. Mowry

Lamport's Test - Example

doi=1,n
doj=1,n
S. a(i,2*j) = a(i-1,2* j+1)

end do
" enddo T~
o 2%j = 2%+ 1
b=2,¢,=0;¢c,=1

ca—c2_ 1

b 2
There is no dependence.

There is dependence.

Distance (i) is 1.
\ /

?
There is no dependencel!

Carnegie Mellon -

Todd C. Mowry

_22-

Optimizing Compilers: Parallelization

-
GCD Test

e Given the following equation:

n
D aixi=c ai s and c are integers
i=1

an integer solution exists if and only if:

gcd(ai, a2, --,an) divides ¢

e Problems:
- ignores loop bounds.
- gives no information on distance or direction of dependence.

- often gcd(......) is 1 which always divides c, resulting in false
dependences.

I Carnegie Mellon [

Optimizing Compilers: Parallelization -23- Todd C. Mowry

]
GCD Test - Example

doi=1,10
S¢oa(2%i) = b(i) + c(i)
S,o d(i) = a(2*i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i;<i, <10 and such that:

2%i, = 2%j, -1?
or
2%i, - 2%i, = 1?

e There will be an integer solution if and only if gcd(2,-2)
divides 1.

e This is not the case, and hence, there is no dependencel

I Carnegie Mellon [

Optimizing Compilers: Parallelization -24- Todd C. Mowry

]
GCD Test Example

doi=1,10
S¢oa(i) = b(i) + c(i)
S,: d(i) = a(i-100)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i;<i, <10 and such that:

i, = i, -100?
or
i - iy = 100?

e There will be an integer solution if and only if gcd(1,-1) divides
100.

e This is the case, and hence, there is dependence! Or is there?

I Carnegie Mellon [

Optimizing Compilers: Parallelization -25- Todd C. Mowry

e
Dependence Testing Complications

e Unknown loop bounds.

doi=1 N
S a(i) = a(i+10)
end do

What is the relationship between N and 10?

e Triangular loops.

doi=1 N
doj=1,i-1
s a(iy) =a()
end do
end do

Must impose j < i as an additional constraint.

I Carnegie Mellon [

Optimizing Compilers: Parallelization -26- Todd C. Mowry

e
More Complications

e User variables.

doi=1,10
S¢a(i) = a(i+k)
end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., normalization).

doi=L,H
S a(i) = a(i-1)
end do

U

doi=1,H-L
Sit a(i+l) = a(i+L-1)
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization -27- Todd C. Mowry

e
More Complications

e Scalars.
doi=1 N doi=1 N
S x=a(i) S x(i) = a(i)
S, b(i) = x = S,o b(i) = x(i)
end do end do
J=N-1
doi=1 N doi=1 N
Sy q(i) 5 a(j) — S;a(i) = a(N-i)
Sy j=j-1
end do end do
sum=0 doi=1N
doi=1N — Syt sum(i) = a(i)
Sy sum = sum + a(i) end do
end do sum += sum(i) i=1,N

I Carnegie Mellon [

Optimizing Compilers: Parallelization -28- Todd C. Mowry

e
Serious Complications

e Aliases.
- Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

- Common blocks: Fortran's way of having shared/global variables.

common /shared/a,b,c

subroutine foo (...)
common /shared/a,b,c

common /shared/x.y,z

I Carnegie Mellon [

Optimizing Compilers: Parallelization -29- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
do j=2,m-1
a(i, j) = ..
= a(i, §)
b(i, j) = ..
= b(i, j-1)
c@i, j) = ..
= c(i-1, j)
end do
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization -30- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
do j=2,m-1
+ a(i, j) = ..
o - = a(i, j)
b(i, j) = ...
= b(i, j-1)
c@i, j) = ..
= c(i-1, j)
end do
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization -31- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
do j=2,m-1
a(i, j) = ..
= a(i, §)
5t b(i, j) = .. o
=< = b(i, j-1)
c@i, j) = ..
= c(i-1, j)
end do
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization -32- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
do j=2,m-1
a(i, j) = ..
= a(i, §)
b(i, j) = ..
= b(i, j-1)
T C(i, J) - ..
O - = c(i-1, j)
end do
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization -33- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
do j=2,m-1
+ a(i, j) = ..
o - = a(i, j)
5t b(i, j) = ...
=< = b(i, j-1)
61 C(i, J) - ..
<= = c(i-1, j)
end do
end do

w_mw

e Outermost loop with a non "=" direction carries dependence!

I Carnegie Mellon [

Optimizing Compilers: Parallelization -34- Todd C. Mowry

e
Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

I Carnegie Mellon [

Optimizing Compilers: Parallelization -35- Todd C. Mowry

]
Loop Parallelization - Example

l

fork
i=n-1

i=2

1-
37

l join

e TIterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

e Outer loop parallelism.
I, Carnegie Mellon [

Optimizing Compilers: Parallelization -36- Todd C. Mowry

]
Loop Parallelization - Example

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

e Inner loop parallelism.

I Carnegie Mellon [

Optimizing Compilers: Parallelization -37- Todd C. Mowry

]
Loop Parallelization - Example

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

e Inner loop parallelism.

I Carnegie Mellon [

Optimizing Compilers: Parallelization -38- Todd C. Mowry

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n
doi=1n
..a(i,j) ...
end do
end do

Al YYVY
Carnegie Mellon -
-39- Todd C. Mowry

Optimizing Compilers: Parallelization

Loop Interchange

Loop interchange changes the order of the loops to improve the

spatial locality of a program.

doj=1,n doi=1,n
doi=1n doj=1,n
..a(i,j)a(i,j) ...
end do end do
end do end do

P eoselececfoces

C

J

M

Optimizing Compilers: Parallelization -40-

Todd C. Mowry

e
Loop Interchange

e Loop interchange can improve the granularity of parallelism!

doi=1,n doj=1,n
doj=1,n doi=1,n
a(i.j) = b(i.j) a(i.j) = b(i.j)
c(i,j) = a(i-1,j) c(i,j) = a(i-1,j)
end do end do
end do end do
5! 2

I Carnegie Mellon [

Optimizing Compilers: Parallelization -41- Todd C. Mowry

e
Loop Interchange

e When is loop interchange legal?

I Carnegie Mellon [

Optimizing Compilers: Parallelization -42- Todd C. Mowry

e
Loop Interchange

doj=1n
doi=1ln
.a(i,j) ..
end do
end do

e When is loop interchange legal?

I Carnegie Mellon [

Optimizing Compilers: Parallelization -43- Todd C. Mowry

doi=1n
doj=1n
.a(i,j) ..
end do
end do

e When is loop interchange legal?

Loop Interchange

doj=1n
doi=1ln
.a(i,j) ..
end do
end do

I Carnegie Mellon [

Optimizing Compilers: Parallelization

Todd C. Mowry

doi=1n
doj=1n
.a(i,j) ..
end do
end do

Loop Interchange

doj=1n
doi=1ln
.a(i,j) ..
end do
end do

e When is loop interchange legal? when the "interchanged”

dependences remain lexiographically positivel

I Carnegie Mellon [

Optimizing Compilers: Parallelization

Todd C. Mowry

e
Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

o o

dot=1T = oo
doi=1n — e
doj=1n - e
.a(i,j) .. - S

end do = S
end do = oo
end do - .

I Carnegie Mellon [

Optimizing Compilers: Parallelization -46- Todd C. Mowry

e
Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

doic=1n B control loops

dojc=1,n,B RN NN NN NN NN NN NN

dOT:I'T eec0coecccccccooeoe
doi:]_,B R xxxx

dOJ:].,B ee00000000000000
Cl(iC"‘i"l,JC"'J-l) e0eccccccccccccoe
end do 0000000000000 000

enddo 00000006000 OCGCOCGOSGOISGTS
enddo 00000006000 OCGCOCGOSGOISGTS

enddo 00000006000 OCGCOCGOSGOISGTS

end do B: Block size

I Carnegie Mellon [

Optimizing Compilers: Parallelization -47- Todd C. Mowry

Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

doic=1n B control loops je=1
dojc=1n,B SIS
dot=1T L SEEEESS
dOi:].,B IC = eceecccoe
doj=1B
.. a(ic+i-1,jc+j-1) ...
end do
end do
end do
end do
end do B: Block size

Carnegie Mellon -

Optimizing Compilers: Parallelization -48- Todd C. Mowry

e
Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

doic=1n, B control loops
dojc=1,n,B ceeee
dot=1T T .
doi=1B soeee IC =
doj=1B seloe
.. a(ic+i-1,jc+j-1) ... seeee
end do X EEX)
end do ceccccccccccccsse
end do ceccccccccccccsse
enddo 0000000000000 0O
end do B: Block size

Optimizing Compilers: Parallelization -49- Todd C. Mowry

e
Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

doic=1n B control loops
dojc=1,n,B
dot=1T
doi=10B
doj=1B
.. a(ic+i-1,jc+j-1) ...
end do
end do ic =2
end do
end do
end do B: Block size

je=1

I Carnegie Mellon [

Optimizing Compilers: Parallelization -50- Todd C. Mowry

e
Loop Blocking (Loop Tiling)

Exploits femporal locality in a loop nest.

doic=1n B control loops

dojc=1,n,B
dot=1T
doi=10B
doj=1B
.. a(ic+i-1,jc+j-1) ...
end do
end do
end do

end do
end do B: Block size

ic =2

jc=2

Optimizing Compilers: Parallelization -51- Todd C. Mowry

e
Loop Blocking (Tiling)

doic=1,n,B
dot=1T dojc=1,n,B
dot=1T doic=1,n,B dot=1T
doi=1n doi=18 doi=1B
doj=1n dojc=1,n,B doj=18B
..a(i,j) .. doj=1B .. a(ic+i-1,jc+j-1) ...
end do .. a(icti-1,jc+j-1) ... end do
end do end do end do
end do end do end do
end do end do
end do

e When is loop blocking legal?
I, Cornegie Mellon [

Optimizing Compilers: Parallelization -52- Todd C. Mowry

