Data Dependence, Parallelization,
and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

Todd C. Mowry

Data Dependence

St A=10
S,: B=A+20
St A=C-D
S,: A=B/C

We define four types of data dependence.

e Flow (true) dependence: a statement S; precedes a

statement S; in execution and S; computes a data value that
S; uses.

o Implies that S; must execute before S;.
58's, (58'S, and S,3'S,)

Carnegie Mellon -

Optimizing Compilers: Parallelization -2- Todd C. Mowry

Data Dependence

St A=10
S,: B=A+20
S;: A=C-D
s,: A=B/C

We define four types of data dependence.

e Anti dependence: a statement S; precedes a statement S; in
execution and S; uses a data value that S; computes.

o Itimplies that S; must be executed before S;.
58°S, (5,8S,)

Optimizing Compilers: Parallelization -3- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
s A=C-D
s,: A=B/C

We define four types of data dependence.

e Output dependence: a statement S; precedes a statement S;
in execution and S; computes a data value that S; also
computes.

o Itimplies that S; must be executed before S;.

58S, (58S, and S,8S,)

Optimizing Compilers: Parallelization -4- Todd C. Mowry

Data Dependence

S A=10
St B=A+20
S;: A=C-D
S, A=B/C

We define four types of data dependence.

e Input dependence: a statement S; precedes a statement S;
in execution and S; uses a data value that S; also uses.

o Does this imply that S; must execute before S;?

58S, (5,8°s,)

il

Carnegie Mellon -

Optimizing Compilers: Parallelization 5- Todd C. Mowry

|
Data Dependence (continued)

o The dependence is said to flow from S; to S; because S;
precedes S; in execution.

e S;is said to be the source of the dependence. S; is said to
be the sink of the dependence.

e The only “true” dependence is flow dependence; it
represents the flow of data in the program.

e The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

St A=10

S,: B=A+20
Syt Al=C-D
s,: A2=B/C

Carnegie Mellon -

Optimizing Compilers: Parallelization -6- Todd C. Mowry

Data Dependence (continued)

e Data dependence in a program may be represented using a
dependence graph 6=(V E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S;: A=10

S,: B=A+20)

S;: A=C-D

e
s,: A=BIC 5‘

Carnegie Mellon -

Optimizing Compilers: Parallelization -7- Todd C. Mowry

Value or Location?

e There are two ways a dependence is defined: value-oriented
or location-oriented.

S;: A=10
S,: B=A+2.0
S;: A=C-D

S,: A=BIC

Optimizing Compilers: Parallelization -8- Todd C. Mowry

Example 1
i=2 ! i=3 ! i=4
doi=2,4 Si2] s;[2]i Si[3] S.[3]1 Si[4] s[4
Sia(i) = b(i) + c(i) L AR O A
Szi o d(i) = a(i) i ' t : =
end do ° ' o '

a(2) a2) a@B3) aB3) a(4) a(4)

e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

o The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

e The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.
5 3 S, or 5 Q; S,
Carnegie Mellon -

Optimizing Compilers: Parallelization -9- Todd C. Mowry

Example 2
i=2 ' i=3 ! i=4
doi=24 Si[2] Sl2]i Si[3] S.3]1 Sil4] S,[4]
Syitoa(i) = b(i) + c(i)
S,o d(i) = a(i-1)
end do

e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence flows between instances of statements in
different iterations (loop-carried dependence).

o The dependence distance is 1. The direction is positive (<).
S 3 S, or 5 61' S,
Carnegie Mellon -

Optimizing Compilers: Parallelization -10- Todd C. Mowry

Example 3
i=2 ! i=3 ' i=4
doi=2,4 Si[2] S[2]i i3] S.311 Si4] S.[4]
Syt a(i) = b(i) + c(i) Rk ket SELET SEEE R
Spt d(i) = a(i+1) s i
end do i’

a2 o3) aB3) o) @) al5)
e There is an instance of S, that precedes an instance of S; in
execution and S, consumes data that S; produces.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence is loop-carried.
e The dependence distance is 1.
5,85, or S, &S

e Are you sure you know why it is S, §¢ S, even though S, appears
before S, in the code?

Optimizing Compilers: Parallelization -1 Todd C. Mowry

Example 4
doi=2,4 a(1,3) a(1,4) a(1,5)
do J =2,4 5[2,2] 5[2,3] S[2,4]
s ai) = a(i-1,+1)
end do
end do

e Aninstance of S precedes
another instance of S and
S produces data that S
consumes.

e Sisboth source and sink.

e The dependence is loop-
carried.

e The dependence distance
is (1,-1).

42 43 44
58,5 or S§,S a4.2) o(4.3) o44)

Optimizing Compilers: Parallelization -12- Todd C. Mowry

Problem Formulation

e Consider the following perfect nest of depth d:

doI =L,V array reference
doT, =LV, ——
: ol , (@),
Lol G)
a(f (D), £(D), - £,(D) =
= a(gy(T), g,(T), -, 9,(T)) subscript subscript
enddo position function
- or
enddo subscript
enddo expression
= (I1v|2""v|d)
=L, Ly) linear functions
_ ¢ bo+b I +b, I, +---+ by Iy
U=(UpU,, -, Uy)
L<U
I - <5 velon [
Optimizing Compilers: Parallelization 13- Todd C. Mowry

|
Problem Formulation

o Dependence will exist if there exists two iteration vectors k
and jsuch that L<k<j<U and:

fl(R) = 91(])
an = -
g 200 =0:(0)

@ =)

e That is:
fi(k)-au())=0
K g (=0
and 2% %)=
and - -
(k)= 9n(j) =0
Carnegie Mellon -
Optimizing Compilers: Parallelization -14- Todd C. Mowry

Problem Formulation - Example

doi=2,4
Siooa(i) = b(i) + c(i)
S,o o d(i) = a(i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
2 <iy <i, <4 and such that:

ij=i-1?
e Answer: yes; i;1=2 & i,=3 and i;=3 & i, =4.
e Hence, there is dependencel

o The dependence distance vector is i,-i; = 1.

e The dependence direction vector is sign(1) = <.

Optimizing Compilers: Parallelization -15- Todd C. Mowry

|
Problem Formulation - Example

doi=2,4
Sioa(i) = b(i) + c(i)
Sy d(i) = a(i+1)
end do

e Does there exist two iteration vectors i, and i,, such that
2 <i; <i, <4 and such that:
iy =i, +1?
e Answer: yes; i1=3 & i,=2 and i;=4 & i, =3. (But, but!).
e Hence, there is dependencel
e The dependence distance vector is iy-i; = -1.
e The dependence direction vector is sign(-1) = >.
o Is this possible?

Optimizing Compilers: Parallelization -16- Todd C. Mowry

|
Problem Formulation - Example

doi=1,10
St a(2*i) = b(i) + c(i)
S,i d(i) = a(2%i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%iy = 2%i, +1?
e Answer: no; 2*i; is even & 2%i,*1 is odd.

e Hence, there is no dependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization -17- Todd C. Mowry

|
Problem Formulation

e Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraint!

e Analgorithm that determines if there exits two iteration
vectors k and | that satisfies these constraints is called a
dependence tester.

e The dependence distance vector is given by j - k.
e The dependence direction vector is give by sign(] - k).
e Dependence testing is NP-completel

e A dependence test that reports dependence only when there
is dependence is said to be exact. Otherwise it is in-exact.

e A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be

assumed.
Carnegie Mellon -

Optimizing Compilers: Parallelization 18- Todd C. Mowry

|
Dependence Testers

Lamport's Test.

GCD Test.

Banerjee's Inequalities.
Generalized GCD Test.
Power Test.

I-Test.

Omega Test.

Delta Test.

Stanford Test.

etc..

Optimizing Compilers: Parallelization -19- Todd C. Mowry

]
Lamport's Test

e Lamport's Test is used when there is a single index variable
in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

A(- b*itgy,) ="
< =A(,b¥iter,)

o The dependence problem: does there exist i; and i,, such
that L; < i; < i, < U; and such that

. . ..t~ cC2
b*ij+ ¢ = b¥i, +¢,? or k—i= b ?

e There is integer solution if and only if Cl;CZ

is integer.

o The dependence distance is d = % if Li< |d| < U,

e d>0 = ftrue dependence.
d=0 = loop independent dependence.
d<0 = anti dependence.

Optimizing Compilers: Parallelization -20- Todd C. Mowry

Lamport's Test - Example

doj=1,n
S: a(i,§) = a(i-1,j+1)

/ en?god" \

o ij=i,-1? o ji=j+1?
b=1¢=0¢c,=-1 b=1¢=0¢c,=1
Ci—C2 Ci—C2
azc a-e_

b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (j) is -1.

\ /

55(11’71) S or 5550) S

Lamport's Test - Example

doi=1,n
doj=1,n
S a(i,2*)) = a(i-1,2%j+1)

/ eniingodo \

o ijzi,-1? o 2% =2%j,+ 12
b=1¢=0c=-1 b=2,¢,=0;c,=1
Cl_cz:l C1‘C2=_}

b b 2
There is dependence. There is no dependence.

Distance (i) is 1.

?
There is no dependence!
Carnegie Mellon -

Optimizing Compilers: Parallelization -22- Todd C. Mowry

Carnegie Mellon -
Optimizing Compilers: Parallelization -21- Todd C. Mowry
GCD Test
e Given the following equation:
n
daxi=c ai's and c are integers
i-1

an integer solution exists if and only if:
gcd(ar,az, -+, an) divides ¢

e Problems:
- ignores loop bounds.
- gives no information on distance or direction of dependence.
- often gcd(....) is 1 which always divides c, resulting in false

dependences.
I << veion [
Optimizing Compilers: Parallelization -23- Todd C. Mowry

GCD Test - Example

doi=1,10
Sita(2*i) = b(i) + c(i)
S,0 o d(i) = a(2*i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%, = 2%, -1?
or
2%y - 2%iy = 12

o There will be an integer solution if and only if gcd(2,-2)
divides 1.

e This is not the case, and hence, there is no dependencel!
I carnegie metion

Optimizing Compilers: Parallelization -24- Todd C. Mowry

|
GCD Test Example

doi=1,10
Sivoa(i) = b(i) + c(i)
S,i d(i) = a(i-100)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

iy = i, -100?
or
iy - iy = 1007

e There will be an integer solution if and only if gcd(1,-1) divides
100.
e This is the case, and hence, there is dependence! Or is there?

Carnegie Mellon -

Optimizing Compilers: Parallelization -25- Todd C. Mowry

Dependence Testing Complications

e Unknown loop bounds.

doi=1,N
S¢a(i) = a(i+10)
end do

What is the relationship between N and 10?

e Triangular loops.

doi=1,N
doj=1,i-1
St a(ig) = a(i)
end do
end do

Must impose j < i as an additional constraint.
Carnegie Mellon -

Optimizing Compilers: Parallelization -26- Todd C. Mowry

More Complications

e User variables.

doi=1,10
St a(i) = a(i+k)
end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., hormalization).

doi=L,H
S¢ a(i) = a(i-1)
end do

J

doi=1H-L
Sy a(i+l) = a(i+L-1)
end do

Optimizing Compilers: Parallelization -27- Todd C. Mowry

More Complications

e Scalars.
doi=1N doi=1N
S x=a(i) Si x(i) = a(i)
S, b(i) = x = S, b(i) = (i)
end do end do
j=N-1
doi=1,N doi=1,N
Si c_l(i)_: a(j) S¢oa(i) = a(N-i)
Sy -1
end do end do
sum=0 doi=1,N
doi=1N Syt sum(i) = a(i)
Syt sum = sum + a(i) end do
end do sum+= sum(i) i=1,N

Optimizing Compilers: Parallelization

Todd C. Mowry

|
Serious Complications

e Aliases.
- Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

- Common blocks: Fortran's way of having shared/global variables.

common /shared/a,b,c

subroutine foo (...)
common /shared/a,b,c

common /shared/x.y,z

Carnegie Mellon -

Optimizing Compilers: Parallelization -29- Todd C. Mowry

|
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
a(i, j) = .. o
=a(i, j)
b(i, j) = ..
= b(i, j-1)
c@i, §) = ..
. = c(i-1,)
end do
end do
Carnegie Mellon -
Optimizing Compilers: Parallelization -30- Todd C. Mowry

|
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
+ a(i, j) = ..
o~ = a(i, j)
b(i, j) = .
= b(i, j-1)
c@i,j) = .
. = c(i-1, j)
end do
end do

Optimizing Compilers: Parallelization -31- Todd C. Mowry

|
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
a(i, j) = ..
=a(i, j)
5t b(i, j) = .. o
=< = b(i, j-1)
c(i,j) = ..
. = c(i-1, j)
end do
end do

Optimizing Compilers: Parallelization -32- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is hot carried by the loop, it is loop-
independent.

doi=2,n-1
doj=2,m-1
ai, §) = ..
=a(i, j)

b(i, j) = ...
. =b(i, 1)

+ C(i, J) =
o~ LT s,))
end do
end do

Carnegie Mellon -

Optimizing Compilers: Parallelization -33- Todd C. Mowry

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
+ a(i, j) = ..
S..- = a(i, j)
5 b, §) = ..
. =b(i, j1)
t c@i, §) = ..
S = c(i-1, j)
end do
end do

e Outermost loop with a non "=" direction carries dependencel!

Carnegie Mellon -

Optimizing Compilers: Parallelization -34- Todd C. Mowry

Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Optimizing Compilers: Parallelization -35- Todd C. Mowry

Loop Parallelization - Example

join

e TIterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

e Outer loop parallelism.

Optimizing Compilers: Parallelization -36- Todd C. Mowry

Loop Parallelization - Example

e Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

e TInner loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -37- Todd C. Mowry

Loop Parallelization - Example

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

e Inner loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -38- Todd C. Mowry

|
Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n
doi=1,n
o a(ij)
end do
end do

Carnegie Mellon -

Optimizing Compilers: Parallelization -39- Todd C. Mowry

|
Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n doi=1,n
doi=1,n doj=1,n
o a(ig) . woa(ig) .
end do end do
end do end do
—_—

Carnegie Mellon -

Optimizing Compilers: Parallelization -40- Todd C. Mowry

10

Loop Interchange

e Loop interchange can improve the granularity of parallelism!

Loop Interchange

doi=1,n doj=1,n
doj=1,n doi=1,n
a(i,j) = bij). a(i.j) = bij)
c(i.j) = a(i-1,j) c(i.j) = a(i-1,j)
end do end do
end do end do
8" 8.
Carnegie Mellon -
Optimizing Compilers: Parallelization -41- Todd C. Mowry

o
1
doi=1n : - ‘ 3! doj=1n
doj=1n 5t t doi=1n
~a(ig) .. <= : ()
end do " end do
end do [<> end do

e When is loop interchange legal?

Optimizing Compilers: Parallelization

42

Carnegie Mellon -

Todd C. Mowry

Loop Interchange

doi=1n i ' doj=1n
doj =1n 61 + doi=1n
wa(i) .. <= : - a(i) ..

end do end do
end do % end do

e When is loop interchange legal?

Optimizing Compilers: Parallelization -43- Todd C. Mowry

Loop Interchange

| &

doi=1n
doj=1n
o aig) -
end do
end do

e When is loop interchange legal?

Todd C. Mowry

Optimizing Compilers: Parallelization

-44.-

doj=1n
doi=1n
e a(ig) ..
end do
end do

11

Loop Interchange

| &

doi=1n doj=1n
doj=1n doi=1n
i g) . ()
end do end do
end do oL, end do

e When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

Carnegie Mellon -

Optimizing Compilers: Parallelization -45- Todd C. Mowry

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

dot=1T
doi=1n
doj=1n
i g) ..
end do
end do
end do l,
Carnegie Mellon -
Optimizing Compilers: Parallelization -46- Todd C. Mowry

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1nB control loops

dojc=1,n,B
dot=1T
doi=1B
doj=18
. a(ic+i-1,jc+j-1) .
end do
end do
end do

end do
end do B: Block size

Optimizing Compilers: Parallelization -47- Todd C. Mowry

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1n B control loops

dojc=1,n,8B
dot=1T
doi=1B
doj=18B
.. a(ic+i-1,jc+j-1) ...
end do
end do
end do

end do
end do B: Block size

ic=1

Todd C. Mowry

Optimizing Compilers: Parallelization -48-

12

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1nB control loops

dojc=1,n,B
dot=1T
doi=1B
doj=18B
.. a(ic+i-1,je+j-1) .
end do
end do
end do
end do
end do B: Block size

Carnegie Mellon -

Optimizing Compilers: Parallelization -49- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1nB control loops

dojc=1,n,B
dot=1T
doi=1B
doj=18B
.. a(ic+i-1,je+j-1) ...
end do
end do ic=2
end do
end do
end do B: Block size

Carnegie Mellon -

Optimizing Compilers: Parallelization -50- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1nB control loops

dojc=1,n,B
dot=1T
doi=1B
doj=18
. a(ic+i-1,jc+j-1) .
end do
end do
end do
end do
end do B: Block size

ic=2

Carnegie Mellon -

Optimizing Compilers: Parallelization -51- Todd C. Mowry

|
Loop Blocking (Tiling)

doic=1,n,B
dot=1T dojc=1,n,B
dot=1T doic=1,n,B dot=1T
doi=1n doi=18B doi=18B
doj=1n dojc=1,n,8B doj=1B
e a(ig) o doj=1B .. aic+i-1,je+j-1) ..
end do .. a(ic+i-1,jc+j-1) ... end do
end do end do end do
end do end do end do
end do end do
end do

e When is loop blocking legal?
) Crregie Metion. [

Optimizing Compilers: Parallelization -52- Todd C. Mowry

13

