
1

Data Dependence, Parallelization,
and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

Todd C. Mowry

Carnegie Mellon

y y

Data Dependence

DCA:S
2.0AB:S

1.0A:S

3

2

1






 Flow (true) dependence: a statement Si precedes a
statement Sj in execution and Si computes a data value that

We define four types of data dependence.

B/CA:S4 


Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -2-

j
Sj uses.

 Implies that Si must execute before Sj.

)SδSandSδ(SSδS 4
t

22
t

1j
t

i

DCA:S
2.0AB:S

1.0A:S

3

2

1






Data Dependence

 Anti dependence: a statement Si precedes a statement Sj in
execution and Si uses a data value that Sj computes.

B/CA:S4 


We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -3-

j

 It implies that Si must be executed before Sj.

)Sδ(SSδS 3
a

2j
a

i

DCA:S
2.0AB:S

1.0A:S

3

2

1






Data Dependence

 Output dependence: a statement Si precedes a statement Sj
in execution and Si computes a data value that Sj also

B/CA:S4 


We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -4-

j
computes.

 It implies that Si must be executed before Sj.

)SδSandSδ(SSδS 4
o

33
o

1j
o

i

2

DCA:S
2.0AB:S

1.0A:S

3

2

1






Data Dependence

 Input dependence: a statement Si precedes a statement Sj
in execution and Si uses a data value that Sj also uses.

B/CA:S4 


We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -5-

j

 Does this imply that Si must execute before Sj?

)Sδ(SSδS 4
I

3j
I

i

Data Dependence (continued)
 The dependence is said to flow from Si to Sj because Si

precedes Sj in execution.

 Si is said to be the source of the dependence. Sj is said to
be the sink of the dependence.

 The only “true” dependence is flow dependence; it
represents the flow of data in the program.

 The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

1.0A:S1 

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -6-

B/CA2:S

DCA1:S
2.0AB:S

4

3

2

1








Data Dependence (continued)
 Data dependence in a program may be represented using a

dependence graph G=(V,E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S1

S2

t


o

DCA:S
2.0AB:S

1.0A:S

3

2

1









Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -7-

S3

S4

o
t

IB/CA:S4 


Value or Location?
 There are two ways a dependence is defined: value-oriented

or location-oriented.

B/CA:S

DCA:S
2.0AB:S

1.0A:S

4

3

2

1











Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -8-

4

3

Example 1

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i)
end do

a(2) a(2) a(3) a(3) a(4) a(4)
t t t

 There is an instance of S1 that precedes an instance of S2 in
execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -9-

 The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

 The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.

2
t

1 SδS  2
t
01 SδSor

Example 2

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i 1)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i-1)
end do

a(2) a(1) a(3) a(2) a(4) a(3)

t t

 There is an instance of S1 that precedes an instance of S2 in
execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
d d

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -10-

dependence.
 The dependence flows between instances of statements in

different iterations (loop-carried dependence).
 The dependence distance is 1. The direction is positive (<).

2
t

1 SδS  2SδS t
11or

Example 3

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i 1)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i+1)
end do

a(2) a(3) a(3) a(4) a(4) a(5)
a a

 There is an instance of S2 that precedes an instance of S1 in
execution and S2 consumes data that S1 produces.

 S2 is the source of the dependence; S1 is the sink of the
dependence.
The dependence is loop carried

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -11-

1
a

2 SδS  1
a
12 SδSor

 The dependence is loop-carried.
 The dependence distance is 1.

 Are you sure you know why it is even though S1 appears
before S2 in the code?

1
a

2 SS <

Example 4

do i = 2, 4
do j = 2, 4

S: a(i,j) = a(i-1,j+1)
end do

S[2,2] S[2,3] S[2,4]
a(1,3) a(1,4) a(1,5)

end do

S[3,2] S[3,3] S[3,4]
a(2,3) a(2,4) a(2,5)

a(2,2) a(2,3) a(2,4)

a(3,2) a(3,3) a(3,4)

t t

tt

 An instance of S precedes
another instance of S and
S produces data that S
consumes.

 S is both source and sink.
 The dependence is loop-

i d

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -12-

S[4,2] S[4,3] S[4,4]
a(3,3) a(3,4) a(3,5)

a(4,2) a(4,3) a(4,4)

carried.
 The dependence distance

is (1,-1).

SδS t
),( or SδS t

1)(1,

4

Problem Formulation

 Consider the following perfect nest of depth d:

U ,L I do
U ,L I do

222

111


 array reference

enddo
enddo

enddo
))I(g,),I(g),I(a(g

))I(f,),I(f),I(a(f
U ,L I do

m21

m21

ddd

222





















),,)I(f,a(k 



subscript
position

subscript
function

or
subscript

expression

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -13-

)I,,I,(II d21 



)L,,L,L(L d


21

)U,,U,U(U d21 



dd22110 IbIbIbb
functionslinear

 

UL




Problem Formulation
 Dependence will exist if there exists two iteration vectors

and such that and:

)j()k(f

)j(g)k(f 11





UjkL



k


j


and

)j(g)k(f

)j(g)k(f

mm

22








011 )j(g)k(f


 That is:

and

and

and

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -14-

0

022





)j(g)k(f

)j(g)k(f

mm




and
and

and

Problem Formulation - Example

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)

end do

 Does there exist two iteration vectors i1 and i2, such that
2  i1  i2  4 and such that:

i1 = i2 -1?

 Answer: yes; i1=2 & i2=3 and i1=3 & i2 =4.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -15-

 Hence, there is dependence!

 The dependence distance vector is i2-i1 = 1.

 The dependence direction vector is sign(1) = .

Problem Formulation - Example
do i = 2, 4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)

end do

 Does there exist two iteration vectors i1 and i2, such that
2  i1  i2  4 and such that:

i1 = i2 +1?

 Answer: yes; i1=3 & i2=2 and i1=4 & i2 =3. (But, but!).

 Hence, there is dependence!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -16-

, p

 The dependence distance vector is i2-i1 = -1.

 The dependence direction vector is sign(-1) = .

 Is this possible?

5

Problem Formulation - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i+1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1  i1  i2  10 and such that:

2*i1 = 2*i2 +1?

 Answer: no; 2*i is even & 2*i +1 is odd

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -17-

 Answer: no; 2 i1 is even & 2 i2+1 is odd.

 Hence, there is no dependence!

Problem Formulation
 Dependence testing is equivalent to an integer linear

programming (ILP) problem of 2d variables & m+d constraint!

 An algorithm that determines if there exits two iteration
vectors and that satisfies these constraints is called a k


j


vectors and that satisfies these constraints is called a
dependence tester.

 The dependence distance vector is given by .

 The dependence direction vector is give by sign().

 Dependence testing is NP-complete!

k j

k


j


-

k


j


-

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -18-

 A dependence test that reports dependence only when there
is dependence is said to be exact. Otherwise it is in-exact.

 A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be
assumed.

Dependence Testers
 Lamport’s Test.
 GCD Test.
 Banerjee’s Inequalities.
 Generalized GCD Test Generalized GCD Test.
 Power Test.
 I-Test.
 Omega Test.
 Delta Test.
 Stanford Test.
 etc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -19-

 etc…

Lamport’s Test
 Lamport’s Test is used when there is a single index variable

in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

)ci*bA(

 The dependence problem: does there exist i1 and i2, such
that Li  i1  i2  Ui and such that

b*i1 + c1 = b*i2 + c2? or

Th i i t l ti if d l if i i t

 ),cib,A(1
),ci*b,A( 2

?
b

ccii 21
12




cc 21

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -20-

 There is integer solution if and only if is integer.

 The dependence distance is d = if Li  |d|  Ui.
 d  0  true dependence.

d = 0  loop independent dependence.
d  0  anti dependence.

b
cc 21

b
cc 21

6

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,j) = a(i-1,j+1)
end do
d d

 i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

end do

121 

b

cc

 j1 = j2 + 1?

b = 1; c1 = 0; c2 = 1

121 

b

cc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -21-

There is dependence.

Distance (i) is 1.

There is dependence.

Distance (j) is -1.

SδS t
),(orSδS t

1)(1,

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,2*j) = a(i-1,2*j+1)
end do
d d

 i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

end do

121 

b

cc

 2*j1 = 2*j2 + 1?

b = 2; c1 = 0; c2 = 1

2
121 


b

cc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -22-

There is dependence.

Distance (i) is 1.

There is no dependence.

?
There is no dependence!

GCD Test
 Given the following equation:

egersintarecands'acxa ii
n

i
i 

1

an integer solution exists if and only if:

 Problems:

i1

cdivides)a,,a,agcd(n21

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -23-

 Problems:
– ignores loop bounds.
– gives no information on distance or direction of dependence.
– often gcd(……) is 1 which always divides c, resulting in false

dependences.

GCD Test - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i-1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1  i1  i2  10 and such that:

2*i1 = 2*i2 -1?
or

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -24-

2*i2 - 2*i1 = 1?

 There will be an integer solution if and only if gcd(2,-2)
divides 1.

 This is not the case, and hence, there is no dependence!

7

GCD Test Example

do i = 1, 10
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-100)

end do

 Does there exist two iteration vectors i1 and i2, such that
1  i1  i2  10 and such that:

i1 = i2 -100?
or

i i 100?

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -25-

i2 - i1 = 100?

 There will be an integer solution if and only if gcd(1,-1) divides
100.

 This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications
 Unknown loop bounds.

do i = 1, N
S1: a(i) = a(i+10)

end do

What is the relationship between N and 10?

 Triangular loops.

do i = 1, N
do j = 1, i-1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -26-

Must impose j  i as an additional constraint.

S: a(i,j) = a(j,i)
end do

end do

More Complications
 User variables.

do i = 1, 10
S1: a(i) = a(i+k)

end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., normalization).

do i = L, H
S1: a(i) = a(i-1)

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -27-

do i = 1, H-L
S1: a(i+L) = a(i+L-1)

end do



More Complications
 Scalars.

do i = 1, N
S1: x = a(i)
S2: b(i) = x

do i = 1, N
S1: x(i) = a(i)
S2: b(i) = x(i)

2 ()
end do

2 () ()
end do

j = N-1
do i = 1, N

S1: a(i) = a(j)
S2: j = j - 1

end do

do i = 1, N
S1: a(i) = a(N-i)

end do



Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -28-

sum = 0
do i = 1, N

S1: sum = sum + a(i)
end do

do i = 1, N
S1: sum(i) = a(i)

end do
sum += sum(i) i = 1, N



8

Serious Complications
 Aliases.

– Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

– Common blocks: Fortran’s way of having shared/global variables.

common /shared/a,b,c
:

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -29-

:

subroutine foo (…)
common /shared/a,b,c

common /shared/x,y,z

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -30-

c(i, j) = …
… = c(i-1, j)

end do
end do

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ 

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -31-

c(i, j) = …
… = c(i-1, j)

end do
end do

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ 

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -32-

c(i, j) = …
… = c(i-1, j)

end do
end do

9

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -33-

c(i, j) = …
… = c(i-1, j)

end do
end do

t
,δ 

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

d i 2 1do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ 

t
,δ 

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -34-

 Outermost loop with a non “=“ direction carries dependence!

c(i, j) = …
… = c(i-1, j)

end do
end do

t
,δ 

Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -35-

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
i=2

i=3 i=n-2

i=n-1

do j = 2, m 1
b(i, j) = …
… = b(i, j-1)

end do
end do

t
,δ 

join

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -36-

 Iterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

 Outer loop parallelism.

10

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
j=2

j=3 j=m-2

j=m-1

do j = 2, m 1
b(i, j) = …
… = b(i-1, j)

end do
end do

t
,δ 

join

i=i+1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -37-

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

 Inner loop parallelism.

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
j=2

j=3 j=m-2

j=m-1

do j = 2, m 1
b(i, j) = …

… = b(i-1, j-1)
end do

end do

t
,δ 

join

i=i+1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -38-

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

 Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1, n

... a(i,j) ...
end do

end do

j

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -39-

M

C

P

i

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1, n

... a(i,j) ...
end do

end do

do i = 1, n
do j = 1, n

… a(i,j) ...
end do

end do

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -40-

j
M

C

P

11

Loop Interchange
 Loop interchange can improve the granularity of parallelism!

do i = 1, n
do j = 1, n

a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
end do

do j = 1, n
do i = 1, n

a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -41-

t
,δ 

t
,δ 

Loop Interchange

j

i
tδ

tδ 
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ 

t
,δ 

t
,δ 

t
,δ 

t
,δ 

,δ  ,
t
,δ 

t
,δ 

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -42-

 When is loop interchange legal?

Loop Interchange

j

i
tδ

tδ 
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ 

t
,δ 

t
,δ 

,δ  ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -43-

 When is loop interchange legal?

Loop Interchange

j

i
tδ

tδ 
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ 

t
,δ 

t
,δ 

,δ  ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -44-

 When is loop interchange legal?

12

Loop Interchange

j

i
tδ

tδ 
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ 

t
,δ 

t
,δ 

,δ  ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -45-

 When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do t = 1,T
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -46-

end do

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -47-

end do
end do

end do B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B
jc =1control loopsdo ic = 1, n, B

do jc = 1, n , B
do t = 1,T

do i = 1,B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

ic =1

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -48-

end do
end do

end do B: Block size

13

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B
jc =2control loopsdo ic = 1, n, B

do jc = 1, n , B
do t = 1,T

do i = 1,B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

ic =1

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -49-

end do
end do

end do B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
ic =2

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -50-

end do
end do

end do

jc =1

B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
ic =2

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -51-

end do
end do

end do

jc =2

B: Block size

Loop Blocking (Tiling)

do t = 1 T
do t = 1,T
do ic = 1 n B

do ic = 1, n, B
do jc = 1, n , B

do t = 1 Tdo t = 1,T
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

end do

do ic = 1, n, B
do i = 1,B
do jc = 1, n, B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
end do

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -52-

 When is loop blocking legal?

