Lecture 29(a)

Intro to Thread-Level Speculation

I Carnegie Mellon [

Todd C. Mowry 15-745: TLS 1

-
Automatic Parallelization

Proving independence of threads is hard:
— complex control flow
— complex data structures
— pointers, pointers, pointers
— run-time inputs
How can we make the compiler’s job feasible?

@DThread-Level Speculation (TLS)

I Carnegie Mellon [

- /7]
Example

TI me Processor
: | = hash[3]

" il hashiio =y |
while (..){ \

= hash[19]

X = hash[index1];

hash[21] =

hash[index2] = y; .:“hash[33]

hash[30] =

= hash[10] ¥

hash[25] =

]
Example of Thread-Level Speculation

i Processor i Processor i Processor i Processor

Epoch 1
: | = hash[3]

hash[10] = Epoch 2

Time

Epoch 4
i+ | = hash[10]

: | hash[25] =

]
Example of Thread-Level Speculation

: Processor Processor ! Processor ! Processor

Epoch 1 Epoch 2 Epoch 3

_ ¥ ' EEEpoch4
=hash[3] ii] =hash[19], iij - H
¥ __\/?S\a[t\olﬂ. -haSh[3A3],;§—b: hash[10]

hash[10] =——-mm = ii| hash[30] =

| hash[25] =

Time

]
Example of Thread-Level Speculation

i Processor i Processor i Processor i Processor

Epoch 1 Epoch 2 Epoch 3

_ ¥ Epoch i}
=hash[3] :i|= P
{‘,?3{‘3[&81\\ i haSh[3;3]’—l»— hash[10]

hash[10] =——1ﬁh[’211 = i! | hash[30] =

i | hash[25] =

- Hlcommity . FELL Vi . ¥
Time commit: commlt? commit?

]
Example of Thread-Level Speculation

i Processor i Processor i Processor i Processor

Epoch 1 Epoch 2
: i o Epoch 3
{ | = hash[3] . P Epoch 4

= hash[19] = hash[3;3]’-l»- hash[10]

hash[10] = = hash[30]— hash[25]‘

commit?
) sy
:: Epoch 4 :

= hash[10]

| commit?

Tlme (ltlolmmit?

hash[25] =

e
Overview of Our Approach

System requirements:
1) Detect data dependence violations
» extend invalidation-based cache coherence
2) Buffer speculative modifications
* use the caches as speculative buffers

]
Life Cycle of an Epoch

T' Slow
ime — +«— Spawned Commit:
v Init
Becomes v
\ .
a Speculative \ ,
Speculative ,
Work \
Fast \ v
Wait to be = —— +— Commit? Commit:
Homefree? _
v
Complete, 1

Pass Homefree -~
\ - \/

I Carnegie Mellon [

Simulation Infrastructure

Compiler system and tools based on SUIF

— help analyze dependences, insert synchronization

— produce MIPS binaries containing TLS primitives
Benchmarks (all run to completion)

— buk, compress95, ijpeg, equake

Simulator @ ne. @

— superscalar, similar to MIPS R10K [C | uan [C
— models all bandwidth and contention P .
: Crossbar
|
C

& detailed simulation!

-
Performance on a 4-Processor CMP

2.5 2.26
1.94
2 - 1.77
W Region
o
> 1.5 1.27
©
(<))
S 1
n
0.5 -
0 _|
buk compress9s equake ijpeg
Parallel ;0 6o, 47.3% 39.3% 22.1%
Coverage:

-
Performance on a 4-Processor CMP

m Region

W Program

buk compress9s equake ljpeg

Parallel o o, 47.3% 39.3% 22.1%
Coverage:

F program speedups are limited by coverage

I Carnegie Mellon [

]
Varying the Number of Processors

spawn
syne
hg%afraa
idle

istall

deache miss
busy

Z 34 6 8 1 2. 346 8

1 1 2 I 4 6 B 1
T buk Tmpressgﬁ 1equake T ijpeg

Normalized Region Execution Time

@Bbuk and equake are memory-bound

&

compress95 and ijpeg are computation-intensive

I Carnegie Mellon [

]
Varying the Number of Processors

spawn
syne
hg%afraa
idle

istall

deache miss
busy

1 2 I 4 6 8B 1 2 I 4 6 B 1 2 3 4 6 8 1 2 34 6 8

buk compress9o5 equake ijpeg

Normalized Region Execution Time

@Dbuk and equake scale well

&

passing the homefree token is not a bottleneck

I Carnegie Mellon [

Scaling Beyond Chip Boundaries

Node Node
@ EEE EEE @
E C HEE HEE C i
| |
Crossbar rossbar
} }
C C
S EEEEEEEEEEEEEEN] IIIIIIIIIIIIIIII LERRERE ERREEEREN]] IIIIIIIIIIIIIIIIII

Shdred Memory

200 Cycles

& simulate architectures with 1, 2 and 4 nodes
e carnegie Melion: -

e
Scaling Beyond Chip Boundaries

100 spawn
syne
80 homeiree
idle
istall
decache miss

50 busy

Normalized Region Execution Time

40
20
0
121 122 124 1x8 2x? 2nd MB 4x2 424 121 122 124 1x8 a2 Pl HE 4x2 424
Sindke Node odes 4 T::das Sinﬂa N ode ndas 4 Ifydas
btk

" multi-chip systems benefit from TLS

I Carnegie Mellon [

e
Scaling Beyond Chip Boundaries

100 spawn
sync
80 homefree
idle
istall
60 deache_miss
busy

40

20

121 122 1x4 1x8 a2 Zud 2xg 4x7 424 121 122 1x4 1x8 2x2 Zxd 2xg 4x7 424
Single Node 2 Nnd? 4 Nodes Single Node 2 Nts 4 Nodes
buk equa

Normalized Region Execution Time

F~our scheme scales well

I Carnegie Mellon [

-
Conclusions

The overheads of our scheme are low:
— mechanisms to squash or commit are not a bottleneck
— per-word speculative state is not always necessary
It offers compelling performance improvements:

— program speedups from 8% to 46% on a 4-processor
CMP

— program speedups up to 75% on multi-chip
architectures

It is scalable:
— coherence provides elegant data dependence tracking

& seamless TLS on a wide range of architectures

I Carnegie Mellon [

