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Automatic Parallelization

Proving independence of threads is hard:
— complex control flow
— complex data structures
— pointers, pointers, pointers
— run-time inputs
How can we make the compiler’s job feasible?

@DThread-Level Speculation (TLS)
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Example of Thread-Level Speculation
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Example of Thread-Level Speculation

: Processor Processor ! Processor ! Processor

Epoch 1 Epoch 2 Epoch 3

_ ¥ ' EEEpoch4
=hash[3]  ii] =hash[19], iij - H
¥ __\/?S\a[t\olﬂ. -haSh[3A3],;§—b: hash[10]

hash[10] =——-mm = ii| hash[30] =

| hash[25] =

Time



]
Example of Thread-Level Speculation

i Processor i Processor i Processor i Processor

Epoch 1 Epoch 2 Epoch 3

_ ¥ Epoch i}
=hash[3] :i|= P
{‘,?3{‘3[&81\\ i haSh[3;3]’—l»— hash[10]

hash[10] =——1ﬁh[’211 = i! | hash[30] =

i | hash[25] =

- Hlcommity . FELL Vi . ¥
Time commit: commlt? commit?



]
Example of Thread-Level Speculation

i Processor i Processor i Processor i Processor

Epoch 1 Epoch 2
: i o Epoch 3
{ | = hash[3] . P Epoch 4

= hash[19] = hash[3;3]’-l»- hash[10]

hash[10] = = hash[30]— hash[25]‘

commit?
) sy
:: Epoch 4 :

= hash[10]

| commit?

Tlme (ltlolmmit?

hash[25] =




e
Overview of Our Approach

System requirements:
1) Detect data dependence violations
» extend invalidation-based cache coherence
2) Buffer speculative modifications
* use the caches as speculative buffers
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Life Cycle of an Epoch
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Simulation Infrastructure

Compiler system and tools based on SUIF

— help analyze dependences, insert synchronization

— produce MIPS binaries containing TLS primitives
Benchmarks (all run to completion)

— buk, compress95, ijpeg, equake

Simulator @ ne. @

— superscalar, similar to MIPS R10K [C | uan [ C
— models all bandwidth and contention P .
: Crossbar
|
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& detailed simulation!
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Performance on a 4-Processor CMP
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Performance on a 4-Processor CMP
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F program speedups are limited by coverage
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Varying the Number of Processors
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@Bbuk and equake are memory-bound

&

compress95 and ijpeg are computation-intensive
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Varying the Number of Processors
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@Dbuk and equake scale well

&

passing the homefree token is not a bottleneck
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Scaling Beyond Chip Boundaries
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& simulate architectures with 1, 2 and 4 nodes
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Scaling Beyond Chip Boundaries

100 spawn
syne
80 homeiree
idle
istall
decache miss

50 busy

Normalized Region Execution Time

40
20
0
121 122 124 1x8 2x? 2nd MB 4x2 424 121 122 124 1x8 a2 Pl HE 4x2 424
Sindke Node odes 4 T::das Sinﬂa N ode ndas 4 Ifydas
btk

" multi-chip systems benefit from TLS
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Scaling Beyond Chip Boundaries
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F~our scheme scales well
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Conclusions

The overheads of our scheme are low:
— mechanisms to squash or commit are not a bottleneck
— per-word speculative state is not always necessary
It offers compelling performance improvements:

— program speedups from 8% to 46% on a 4-processor
CMP

— program speedups up to 75% on multi-chip
architectures

It is scalable:
— coherence provides elegant data dependence tracking

& seamless TLS on a wide range of architectures
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