Lecture 29(a)

Intro to Thread-Level Speculation
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Automatic Parallelization

Proving independence of threads is hard:
— complex control flow
- complex data structures
— pointers, pointers, pointers
— run-time inputs
How can we make the compiler's job feasible?

@DThread-Level Speculation (TLS)
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Example

Time Processor
= hash[3]

hash[10] =
while (..){ .

= hash[19]
x = hash[index1]; o -
as =

hash[index2] = y; ;'hash[33]
hash[30] =

= hash[10]

hash[25] =
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Example of Thread-Level Speculation

Processor Processor Processor Processor

Epoch 1
= hash[3]

hash[10] = i} Epoch 2

Time
hash[21]> $ Epoch 3
Epoch 4

*| = hash[10]

hash[25] =
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Example of Thread-Level Speculation

Example of Thread-Level Speculation
Processor Processor Processor Processor Processor Processor Processor Processor
Epoch 1 Epoch 1
= hash(3] E‘_’Tfhhzlg Epoch 3 Epoch 4 = hash(3] E'—J:Chhzlg Fpoch ® Epoch 4
= DeshidZhy 1] =hash(33] :ii- hashfio] = reth: = hash[10]
hash[10] = === - i hash[10] = -4
(ol - hash[30] = hash[25] = (ol hash[25] =
i i commit?
Time Time IS
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Example of Thread-Level Speculation Overview of Our Approach
Processor Processor Processor Processor .
- - System requirements:
Epoch 1 1) Detect data dependence violations
'_J hash(3 Epoch 2 Epoch 3 Epoch 4 + extend invalidation-based cache coherence
= hash[3] :C?é\ha[tl\g \ L= hash[10] 2) Buffer speculative modifications
_ « use the caches as speculative buffers
hash[10] = .-
¥ hash[25] =
i commit?
Time commit?
Retry
Epoch 4
* | = hash[10]
hash[25] =
commit?
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Life Cycle of an Epoch

T' Slow
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Init 1
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- Pass Homefree =1
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Simulation Infrastructure

Compiler system and tools based on SUIF
— help analyze dependences, insert synchronization
— produce MIPS binaries containing TLS primitives
Benchmarks (all run to completion)
— buk, compress95, ijpeg, equake
Simulator O - °
— superscalar, similar o MIPS R10K .
— models all bandwidth and contention

Crossbar
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@ detailed simulation!

Performance on a 4-Processor CMP
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buk compress95 equake ijpeg
c Parallel * ¢ ooy 47.3% 39.3% 22.1%
overage:
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Performance on a 4-Processor CMP

@ Region
B Program

Speedup

buk compress95 equake ijpeg
56.6% 47.3% 39.3% 22.1%

Parallel
Coverage:

@ program speedups are limited by coverage
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Varying the Number of Processors
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Normalized Region Execution Time

LE=buk and equake are memory-bound

&

compress95 and ijpeg are computation-intensive

I - <5 velon [

spawn
syne
_Iﬁrr‘nefrae
idle
“I I P ol
[ ] i gcacheﬁmiss

|
Varying the Number of Processors
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@abuk and equake scale well

&

passing the homefree token is not a bottleneck
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Scaling Beyond Chip Boundaries

Node Node
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200 Cycles

F simulate architectures with 1, 2 and 4 nodes
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Scaling Beyond Chip Boundaries
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@ multi-chip systems benefit from TLS
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Scaling Beyond Chip Boundaries

B spawn

syne

homeiree
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istall
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& our scheme scales well
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Conclusions

The overheads of our scheme are low:
— mechanisms to squash or commit are not a bottleneck
- per-word speculative state is not always necessary
It offers compelling performance improvements:
- progrom speedups from 8% to 46% oh a 4-processor
CM

— program speedups up to 75% on multi-chip
architectures

It is scalable:
— coherence provides elegant data dependence tracking

& seamless TLS on a wide range of architectures
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