Lecture 29(a)

Intro to Thread-Level Speculation

I C-r<sc vieon [
Todd C. Mowry 15-745: TLS 1

Automatic Parallelization

Proving independence of threads is hard:
— complex control flow
- complex data structures
— pointers, pointers, pointers
— run-time inputs
How can we make the compiler's job feasible?

@DThread-Level Speculation (TLS)

I - 75 velon [

Example

Time Processor
= hash[3]

hash[10] =
while (..){ .

= hash[19]
x = hash[index1]; o -
as =

hash[index2] = y; ;'hash[33]
hash[30] =

= hash[10]

hash[25] =

Carnegie Mellon -

Example of Thread-Level Speculation

Processor Processor Processor Processor

Epoch 1
= hash[3]

hash[10] = i} Epoch 2

Time
hash[21]> $ Epoch 3
Epoch 4

*| = hash[10]

hash[25] =

R < veion [

Example of Thread-Level Speculation

Example of Thread-Level Speculation
Processor Processor Processor Processor Processor Processor Processor Processor
Epoch 1 Epoch 1
= hash(3] E‘_’Tfhhzlg Epoch 3 Epoch 4 = hash(3] E'—J:Chhzlg Fpoch ® Epoch 4
= DeshidZhy 1] =hash(33] :ii- hashfio] = reth: = hash[10]
hash[10] = === - i hash[10] = -4
(ol - hash[30] = hash[25] = (ol hash[25] =
i i commit?
Time Time IS
IR carnegie Metion [

I - 75 velon [

|
Example of Thread-Level Speculation Overview of Our Approach
Processor Processor Processor Processor .
- - System requirements:
Epoch 1 1) Detect data dependence violations
'_J hash(3 Epoch 2 Epoch 3 Epoch 4 + extend invalidation-based cache coherence
= hash[3] :C?é\ha[tl\g \ L= hash[10] 2) Buffer speculative modifications
_ « use the caches as speculative buffers
hash[10] = .-
¥ hash[25] =
i commit?
Time commit?
Retry
Epoch 4
* | = hash[10]
hash[25] =
commit?
I carnegie Metion [I carnegie Metion [

|
Life Cycle of an Epoch

T' Slow
Ime ~ —g—+— Spawned Commit:
Init 1
Becomes v T
C L ’
e Speculative T T
\. L
Speculative e T
Work \
Fast _ \' e
Wait to be = - «— Commit? Commit: -~ 4
Homefree?[1 T
Complet v 1
omplete, =1
- Pass Homefree =1
\ = _\] -/

I - <5 velon [

Simulation Infrastructure

Compiler system and tools based on SUIF
— help analyze dependences, insert synchronization
— produce MIPS binaries containing TLS primitives
Benchmarks (all run to completion)
— buk, compress95, ijpeg, equake
Simulator O - °
— superscalar, similar o MIPS R10K .
— models all bandwidth and contention

Crossbar

Carnegie Mellon -

@ detailed simulation!

Performance on a 4-Processor CMP

25 2:26
1.94
2+ 1.77
Q.
S 1.5 A 1.27
o
[}
2 1
(7]
0.5 1
0 - T T
buk compress95 equake ijpeg
c Parallel * ¢ ooy 47.3% 39.3% 22.1%
overage:

Carnegie Mellon -

Performance on a 4-Processor CMP

@ Region
B Program

Speedup

buk compress95 equake ijpeg
56.6% 47.3% 39.3% 22.1%

Parallel
Coverage:

@ program speedups are limited by coverage

R < veion [

|
Varying the Number of Processors

100

usy

12 346 38 12 34 6 8 12 34 6 3 |2__34‘§8
1 buk Tmpre3395 1equake 1 ijpeg

Normalized Region Execution Time

LE=buk and equake are memory-bound

&

compress95 and ijpeg are computation-intensive

I - <5 velon [

spawn
syne
_Iﬁrr‘nefrae
idle
“I I P ol
[] i gcacheﬁmiss

|
Varying the Number of Processors

g 100} -

£

S spawn

2 syne

3 hometree
¢ sp idle

= D istall)
c] deache_miss
o Ji busy

) | IIIIII IIIIii IIIIII IIIIII

o

[

° 0

g 12 346 3 12z] 12 6 IZ__ZQ‘OH

= buk compressgs equake ijpeg

13

=

o

2

@abuk and equake scale well

&

passing the homefree token is not a bottleneck

I - 75 velon [

Scaling Beyond Chip Boundaries

Node Node

° [T1] P "T11] @ (111} °
Crossbar T rossbar

| G :l [€ |

| |
Shdred Memory

200 Cycles

F simulate architectures with 1, 2 and 4 nodes
Carnegie Mellon -

|
Scaling Beyond Chip Boundaries

100 - spawn
o sync
E gl homeiree
= idle
s istall
2 L deache_miss
£ 60 busy
o
(]
& an}-
c
2
¥ 20t
[
T
&
% h_tI 1x2 1x4 1x8 22 Zxd 2xB 4x2Z dxd l:_(l 1x2Z 1x4 1x3 2x2 Zxd 2x8 Ax7 x4
£ Singe Node odes 4 Modes Single Node odes 4 Modes
=
S bitk equiake

@ multi-chip systems benefit from TLS

R < veion [

-
=]
a

80

-]

40

20

Normalized Region Execution Time
(=)

Scaling Beyond Chip Boundaries

B spawn

syne

homeiree

idle

istall

= deache _miss
busy

1x1 1x2 1x4 1x8 Ix2 Ixd 2x8 ax? 4x4 1x1 1x2 1x4 18 2x2 x4 BB A4xZ dxd
SingleNode 2 Nod? 4 Nodes Single Node 2 Nts 4 Nodes

buk equa

& our scheme scales well

I - <5 velon [

|
Conclusions

The overheads of our scheme are low:
— mechanisms to squash or commit are not a bottleneck
- per-word speculative state is not always necessary
It offers compelling performance improvements:
- progrom speedups from 8% to 46% oh a 4-processor
CM

— program speedups up to 75% on multi-chip
architectures

It is scalable:
— coherence provides elegant data dependence tracking

& seamless TLS on a wide range of architectures

I - 75 velon [

