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LLVM Compiler System

m The LLVM Compiler Infrastructure
Provides reusable components for building compilers
Reduce the time/cost to build a new compiler
Build static compilers, JITs, trace-based optimizers, ...

m The LLVM Compiler Framework
End-to-end compilers using the LLVM Iinfrastructure

C and C++ are robust and aggressive:
m Java, Scheme and others are in development

Emit C code or native code for X86, Sparc, PowerPC



Three primary LLVM components

m The LLVM Virtual Instruction Set

The common language- and target-independent IR
Internal (IR) and external (persistent) representation

m A collection of well-integrated libraries

Analyses, optimizations, code generators, JIT
compiler, garbage collection support, profiling, ...

m A collection of tools built from the libraries

Assemblers, automatic debugger, linker, code
generator, compiler driver, modular optimizer, ...



Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview



Running example: arg promotion

Consider use of

oy-reference parameters:

Int callee(const int &X) { Int callee(const int *X) {
return X+1: j> return *X+1; // memory load
} }
Int caller() { compiles to |Int caller() {
return callee(4); int tmp; /] stack object
} tmp = 4; /[ memory store
return callee(&tmp);
We want: }
Int callee(int X) { o :
TSR Sl vEliminated load in callee
J vEliminated store in caller
Int caller() {
} return callee(4); | vEliminated stack slot for ‘tmp’




Why is this hard?

m Requires interprocedural analysis:
Must change the prototype of the callee
Must update all call sites 2> we must know all callers
What about callers outside the translation unit?

m Requires alias analysis:

Reference could alias other pointers in callee

Must know that loaded value doesn’t change from
function entry to the load

Must know the pointer is not being stored through
m Reference might not be to a stack object!
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The LLVM C/C++ Compiler

m From the high level, it is a standard compiler:
Compatible with standard makefiles
Uses GCC 4.2 C and C++ parser

C fle — [llvmgcc -emit-lvm | — .o file o
el

llvm linker ™ executable

C++ file — [ llvmg++ -emit-livm | — .o file

Compile Time Link Time

m Distinguishing features:
Uses LLVM optimizers, not GCC optimizers
.0 files contain LLVM IR/bytecode, not machine code
Executable can be bytecode (JIT'd) or machine code



Looking into events at compile-time

C file = | llvmgcc | — .ofile

E “cc)l”/ “gccas” \
M [¢]
E

Dead Global Elimination, IP Constant Propagation, Dead
Argument Elimination, Inlining, Reassociation, LICM, Loop
Opts, Memory Promotion, Dead Store Elimination, ADCE, ...




Looking into events at link-time

o~ llvm linker | = executable

» .bc file for LLVM JIT

Native executable

20 LLVM Analysis &
Optimization Passes
Native

Optionally “internalizes”: executable

marks most functions as
internal, to improve IPO

CC”
“llc —march=c” J

NOTE: Produces very ugly C. Officially
d\eprecated, but still works @rly well.

Perfect place for argument |‘7

promotion optimization!
Link in native .o files

. ) 10
and libraries here



Goals of the compiler design

m Analyze and optimize as early as possible:
Compile-time opts reduce modify-rebuild-execute cycle
Compile-time optimizations reduce work at link-time
(by shrinking the program)

m All IPA/IPO make an open-world assumption
Thus, they all work on libraries and at compile-time
“Internalize” pass enables “whole program” optzn

m One IR (without lowering) for analysis & optzn
Compile-time optzns can be run at link-time too!

The same IR is used as input to the JIT
IR design is the key to these goals!
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Goals of LLVM IR

m Easy to produce, understand, and define!

m Language- and Target-Independent
AST-level IR (e.g. ANDF, UNCOL) is not very feasible
= Every analysis/xform must know about ‘all’ languages
m One IR for analysis and optimization

IR must be able to support aggressive IPO, loop opts,
scalar opts, ... high- and low-level optimization!

m Optimize as much as early as possible
Can’t postpone everything until link or runtime
No lowering in the IR!



LLVM Instruction Set Overview #1

m Low-level and target-independent semantics

RISC-like three address code

Infinite virtual register set in SSA form
Simple, low-level control flow constructs
Load/store instructions with typed-pointers

m IR has text, binary, and in-memory forms

loop: , preds = %bb0, %loop
%1.1 = pht 132 [ 0, %bb0O ], [ %1.2, %loop ]
. . %A1Addr = getelementptr float* %A, 132 %i1.1
dor (L =102 1< call void @Sum(Float %AiAddr, %pair* %P)
++1) %i.2 = add 132 %i.1, 1
el (A [ @) %exitcond = 1cmp eq 132 %i.1, %N
br 11 %exitcond, label %outloop, label %lkoop




LLVM Instruction Set Overview #2

m High-level information exposed in the code

Explicit dataflow through SSA form (more on SSA
later in the course)
Explicit control-flow graph (even for exceptions)
Explicit language-independent type-information
Explicit typed pointer arithmetic

m Preserve array subscript and structure indexing

loop: , preds = %bb0, %loop
%1.1 = pht 132 [ 0, %bb0O ], [ %1.2, %loop ]
%A1Addr = getelementptr float* %A, 132 %i1.1
call void @Sum(float %A1Addr, %pair* %P)
1) %i.2 = add i32 %i.1, 1
el (A F ) @) %exitcond = icmp eq 132 %i.1, %N
br 11 %exitcond, label %outloop, label %loop

for (1 = 0; 1 <




LLVM Type System Details

m The entire type system consists of:
Primitives: label, void, float, integer, ...
m Arbitrary bitwidth integers (i1, 132, 164)
Derived: pointer, array, structure, function
No high-level types: type-system is language neutral!

m Type system allows arbitrary casts:
Allows expressing weakly-typed languages, like C
Front-ends can implement safe languages
Also easy to define a type-safe subset of LLVM

See also: docs/LangRef.html



Lowering source-level types to LLVM

m Source language types are lowered.:
Rich type systems expanded to simple type system
Implicit & abstract types are made explicit & concrete

m Examples of lowering:
References turn into pointers: & > T*
Complex numbers: complex float > { float, float }
Bitfields: struct X { int Y:4; int z:2; } > {32}
Inheritance: class T : S {int X; } > { S, i32}
Methods: class T { void fooQ); } > void foo(T*)

m Same idea as lowering to machine code



LLVM Program Structure

m Module contains Functions/GlobalVariables
Module is unit of compilation/analysis/optimization

m Function contains BasicBlocks/Arguments
Functions roughly correspond to functions in C

m BasicBlock contains list of instructions
Each block ends in a control flow instruction

m Instruction is opcode + vector of operands
All operands have types
Instruction result is typed




Our example, compiled to LLVM

Int callee(const int *X) { internal int %callee(int* %X) {
return *X+1; //load %tmp.1 = load int* %X
} %tmp.2 = add int %tmp.1, 1
Int caller() { ret int %tmp.2
int T; // on stack }
T=4; /[ store int %caller() {
return callee(&T); %T = alloca int
} store int 4, int* %T
%tmp.3 = call int %callee(int* %T)
ret int %tmp.3
}

Linker “Iinternalizes”
most functions in most
cases




Our example, desired transformation

internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2
}
int %caller() {
%T = alloca int
store int 4, int* %T
%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

internal int %callee(int %X.val) {
%tmp.2 = add int %X.val, 1
ret int %tmp.2
}
Int %caller() {
%T = alloca int
store int 4, int* %T
%tmp.1l = load int* %T
Yolmp.3 = cail InT Yocaliee(%tmp.1)
ret int %tmp.3

Other transformation
(-mem2reg) cleans up
the rest

4

int %caller() {
%tmp.3 = call int %callee(int 4)
ret int %tmp.3

}
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LLVM Coding Basics

m Written in modern C++, uses the STL.:
Particularly the vector, set, and map classes

m LLVM IR is almost all doubly-linked lists:
Module contains lists of Functions & GlobalVariables
Function contains lists of BasicBlocks & Arguments
BasicBlock contains list of Instructions

m Linked lists are traversed with iterators:

Function *M = ..
for (Function::iterator I = M->begin(); I = M->end(); ++1) {
BasicBlock &BB = *I;

See also: docs/ProgrammersManual.html




LLVM Pass Manager

m Compiler is organized as a series of ‘passes’:
Each pass is one analysis or transformation

m Four types of Pass:
ModulePass: general interprocedural pass
CallGraphSCCPass: bottom-up on the call graph
FunctionPass: process a function at a time
BasicBlockPass: process a basic block at a time

m Constraints imposed (e.g. FunctionPass):
FunctionPass can only look at “current function”
Cannot maintain state across functions

See also: docs/WritingAnLLVMPass . html




Services provided by PassManager

m Optimization of pass execution:
Process a function at a time instead of a pass at a time
Example: three functions, F, G, H in input program, and
two passes X & Y.
“X(F)Y(F) X(G)Y(G) X(H)Y(H)" not “X(FX(G)X(H) Y(FY(G)Y(H)"
Process functions in parallel on an SMP (future work)
m Declarative dependency management:
Automatically fulfill and manage analysis pass lifetimes
Share analyses between passes when safe:
= e.g. “DominatorSet live unless pass modifies CFG”

m Avoid boilerplate for traversal of program

See also: docs/WritingAnLLVMPass_ html
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LLVM tools: two flavors

m “Primitive” tools: do a single job
llvm-as: Convert from .ll (text) to .bc (binary)
llvm-dis: Convert from .bc (binary) to .l (text)
llvm-link: Link multiple .bc files together
llvm-prof: Print profile output to human readers
llvmc: Configurable compiler driver

m Aggregate tools: pull in multiple features
gccas/gccld: Compile/link-time optimizers for C/C++ FE
bugpoint: automatic compiler debugger
llvm-gcc/livm-g++: C/C++ compilers

See also: docs/CommandGuide/




opt tool: LLVM modular optimizer

m Invoke arbitrary sequence of passes:
Completely control PassManager from command line
Supports loading passes as plugins from .so files
opt -load fo0.s0 -passl -pass2 -pass3 x.bc -0 y.bc

m Passes “register” themselves:

RegisterPass<SimpleArgPromotion> X(*'simpleargpromotion",
“"Promote "by reference" arguments to "by value™");

m Standard mechanism for obtaining parameters

opt<string> StringVar(“sv', cl::desc(“Long description of param'),
cl::value desc(“long flag"));

From this, they are exposed through opt:

> opt -load libsimpleargpromote.so —help

—ééép - Sparse Conditional Constant Propagation
-simpleargpromotion - Promote "by reference" arguments to "by
-simplifycfg - Simplify the CFG
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Assignment 1 - Practice

m Introduction to LLVM
Install and play with it

m Learn interesting program properties

Functions: name, arguments, return types, local or
global

Compute live values using iterative dataflow analysis



Assignment 1 - Questions

m Building Control Flow Graph

m Data Flow Analysis
Available Expressions
= Apply existing analysis
New Dataflow Analysis



Questions?

m Thank you
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