The LLVM Compiler Framework

and Infrastructure
(Part 1)

Presented by Gennady Pekhimenko
Substantial portions courtesy of Olatunji Ruwase,
Chris Lattner, Vikram Adve, and David Koes

LLVM Compiler System

m The LLVM Compiler Infrastructure
Provides reusable components for building compilers
Reduce the time/cost to build a new compiler
Build static compilers, JITs, trace-based optimizers, ...

m The LLVM Compiler Framework
End-to-end compilers using the LLVM Iinfrastructure

C and C++ are robust and aggressive:
m Java, Scheme and others are in development

Emit C code or native code for X86, Sparc, PowerPC

Three primary LLVM components

m The LLVM Virtual Instruction Set

The common language- and target-independent IR
Internal (IR) and external (persistent) representation

m A collection of well-integrated libraries

Analyses, optimizations, code generators, JIT
compiler, garbage collection support, profiling, ...

m A collection of tools built from the libraries

Assemblers, automatic debugger, linker, code
generator, compiler driver, modular optimizer, ...

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

Running example: arg promotion

Consider use of

oy-reference parameters:

Int callee(const int &X) { Int callee(const int *X) {
return X+1: j> return *X+1; // memory load
} }
Int caller() { compiles to |Int caller() {
return callee(4); int tmp; /] stack object
} tmp = 4; /[memory store
return callee(&tmp);
We want: }
Int callee(int X) { o :
TSR Sl vEliminated load in callee
J vEliminated store in caller
Int caller() {
} return callee(4); | vEliminated stack slot for ‘tmp’

Why is this hard?

m Requires interprocedural analysis:
Must change the prototype of the callee
Must update all call sites 2> we must know all callers
What about callers outside the translation unit?

m Requires alias analysis:

Reference could alias other pointers in callee

Must know that loaded value doesn’t change from
function entry to the load

Must know the pointer is not being stored through
m Reference might not be to a stack object!

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

The LLVM C/C++ Compiler

m From the high level, it is a standard compiler:
Compatible with standard makefiles
Uses GCC 4.2 C and C++ parser

C fle — [llvmgcc -emit-lvm | — .o file o
el

llvm linker ™ executable

C++ file — [llvmg++ -emit-livm | — .o file

Compile Time Link Time

m Distinguishing features:
Uses LLVM optimizers, not GCC optimizers
.0 files contain LLVM IR/bytecode, not machine code
Executable can be bytecode (JIT'd) or machine code

Looking into events at compile-time

C file = | llvmgcc | — .ofile

E “cc)l”/ “gccas” \
M [¢]
E

Dead Global Elimination, IP Constant Propagation, Dead
Argument Elimination, Inlining, Reassociation, LICM, Loop
Opts, Memory Promotion, Dead Store Elimination, ADCE, ...

Looking into events at link-time

o~ llvm linker | = executable

» .bc file for LLVM JIT

Native executable

20 LLVM Analysis &
Optimization Passes
Native

Optionally “internalizes”: executable

marks most functions as
internal, to improve IPO

CC”
“llc —march=c” J

NOTE: Produces very ugly C. Officially
d\eprecated, but still works @rly well.

Perfect place for argument |‘7

promotion optimization!
Link in native .o files

.) 10
and libraries here

Goals of the compiler design

m Analyze and optimize as early as possible:
Compile-time opts reduce modify-rebuild-execute cycle
Compile-time optimizations reduce work at link-time
(by shrinking the program)

m All IPA/IPO make an open-world assumption
Thus, they all work on libraries and at compile-time
“Internalize” pass enables “whole program” optzn

m One IR (without lowering) for analysis & optzn
Compile-time optzns can be run at link-time too!

The same IR is used as input to the JIT
IR design is the key to these goals!

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

Goals of LLVM IR

m Easy to produce, understand, and define!

m Language- and Target-Independent
AST-level IR (e.g. ANDF, UNCOL) is not very feasible
= Every analysis/xform must know about ‘all’ languages
m One IR for analysis and optimization

IR must be able to support aggressive IPO, loop opts,
scalar opts, ... high- and low-level optimization!

m Optimize as much as early as possible
Can’t postpone everything until link or runtime
No lowering in the IR!

LLVM Instruction Set Overview #1

m Low-level and target-independent semantics

RISC-like three address code

Infinite virtual register set in SSA form
Simple, low-level control flow constructs
Load/store instructions with typed-pointers

m IR has text, binary, and in-memory forms

loop: , preds = %bb0, %loop
%1.1 = pht 132 [0, %bb0O], [%1.2, %loop]
. . %A1Addr = getelementptr float* %A, 132 %i1.1
dor (L =102 1< call void @Sum(Float %AiAddr, %pair* %P)
++1) %i.2 = add 132 %i.1, 1
el (A [@) %exitcond = 1cmp eq 132 %i.1, %N
br 11 %exitcond, label %outloop, label %lkoop

LLVM Instruction Set Overview #2

m High-level information exposed in the code

Explicit dataflow through SSA form (more on SSA
later in the course)
Explicit control-flow graph (even for exceptions)
Explicit language-independent type-information
Explicit typed pointer arithmetic

m Preserve array subscript and structure indexing

loop: , preds = %bb0, %loop
%1.1 = pht 132 [0, %bb0O], [%1.2, %loop]
%A1Addr = getelementptr float* %A, 132 %i1.1
call void @Sum(float %A1Addr, %pair* %P)
1) %i.2 = add i32 %i.1, 1
el (A F) @) %exitcond = icmp eq 132 %i.1, %N
br 11 %exitcond, label %outloop, label %loop

for (1 = 0; 1 <

LLVM Type System Details

m The entire type system consists of:
Primitives: label, void, float, integer, ...
m Arbitrary bitwidth integers (i1, 132, 164)
Derived: pointer, array, structure, function
No high-level types: type-system is language neutral!

m Type system allows arbitrary casts:
Allows expressing weakly-typed languages, like C
Front-ends can implement safe languages
Also easy to define a type-safe subset of LLVM

See also: docs/LangRef.html

Lowering source-level types to LLVM

m Source language types are lowered.:
Rich type systems expanded to simple type system
Implicit & abstract types are made explicit & concrete

m Examples of lowering:
References turn into pointers: & > T*
Complex numbers: complex float > { float, float }
Bitfields: struct X { int Y:4; int z:2; } > {32}
Inheritance: class T : S {int X; } > { S, i32}
Methods: class T { void fooQ); } > void foo(T*)

m Same idea as lowering to machine code

LLVM Program Structure

m Module contains Functions/GlobalVariables
Module is unit of compilation/analysis/optimization

m Function contains BasicBlocks/Arguments
Functions roughly correspond to functions in C

m BasicBlock contains list of instructions
Each block ends in a control flow instruction

m Instruction is opcode + vector of operands
All operands have types
Instruction result is typed

Our example, compiled to LLVM

Int callee(const int *X) { internal int %callee(int* %X) {
return *X+1; //load %tmp.1 = load int* %X
} %tmp.2 = add int %tmp.1, 1
Int caller() { ret int %tmp.2
int T; // on stack }
T=4; /[store int %caller() {
return callee(&T); %T = alloca int
} store int 4, int* %T
%tmp.3 = call int %callee(int* %T)
ret int %tmp.3
}

Linker “Iinternalizes”
most functions in most
cases

Our example, desired transformation

internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2
}
int %caller() {
%T = alloca int
store int 4, int* %T
%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

internal int %callee(int %X.val) {
%tmp.2 = add int %X.val, 1
ret int %tmp.2
}
Int %caller() {
%T = alloca int
store int 4, int* %T
%tmp.1l = load int* %T
Yolmp.3 = cail InT Yocaliee(%tmp.1)
ret int %tmp.3

Other transformation
(-mem2reg) cleans up
the rest

4

int %caller() {
%tmp.3 = call int %callee(int 4)
ret int %tmp.3

}

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

LLVM Coding Basics

m Written in modern C++, uses the STL.:
Particularly the vector, set, and map classes

m LLVM IR is almost all doubly-linked lists:
Module contains lists of Functions & GlobalVariables
Function contains lists of BasicBlocks & Arguments
BasicBlock contains list of Instructions

m Linked lists are traversed with iterators:

Function *M = ..
for (Function::iterator I = M->begin(); I = M->end(); ++1) {
BasicBlock &BB = *I;

See also: docs/ProgrammersManual.html

LLVM Pass Manager

m Compiler is organized as a series of ‘passes’:
Each pass is one analysis or transformation

m Four types of Pass:
ModulePass: general interprocedural pass
CallGraphSCCPass: bottom-up on the call graph
FunctionPass: process a function at a time
BasicBlockPass: process a basic block at a time

m Constraints imposed (e.g. FunctionPass):
FunctionPass can only look at “current function”
Cannot maintain state across functions

See also: docs/WritingAnLLVMPass . html

Services provided by PassManager

m Optimization of pass execution:
Process a function at a time instead of a pass at a time
Example: three functions, F, G, H in input program, and
two passes X & Y.
“X(F)Y(F) X(G)Y(G) X(H)Y(H)" not “X(FX(G)X(H) Y(FY(G)Y(H)"
Process functions in parallel on an SMP (future work)
m Declarative dependency management:
Automatically fulfill and manage analysis pass lifetimes
Share analyses between passes when safe:
= e.g. “DominatorSet live unless pass modifies CFG”

m Avoid boilerplate for traversal of program

See also: docs/WritingAnLLVMPass_ html

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

LLVM tools: two flavors

m “Primitive” tools: do a single job
llvm-as: Convert from .ll (text) to .bc (binary)
llvm-dis: Convert from .bc (binary) to .l (text)
llvm-link: Link multiple .bc files together
llvm-prof: Print profile output to human readers
llvmc: Configurable compiler driver

m Aggregate tools: pull in multiple features
gccas/gccld: Compile/link-time optimizers for C/C++ FE
bugpoint: automatic compiler debugger
llvm-gcc/livm-g++: C/C++ compilers

See also: docs/CommandGuide/

opt tool: LLVM modular optimizer

m Invoke arbitrary sequence of passes:
Completely control PassManager from command line
Supports loading passes as plugins from .so files
opt -load fo0.s0 -passl -pass2 -pass3 x.bc -0 y.bc

m Passes “register” themselves:

RegisterPass<SimpleArgPromotion> X(*'simpleargpromotion",
“"Promote "by reference" arguments to "by value™");

m Standard mechanism for obtaining parameters

opt<string> StringVar(“sv', cl::desc(“Long description of param'),
cl::value desc(“long flag"));

From this, they are exposed through opt:

> opt -load libsimpleargpromote.so —help

—ééép - Sparse Conditional Constant Propagation
-simpleargpromotion - Promote "by reference" arguments to "by
-simplifycfg - Simplify the CFG

Tutorial Qverview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m The Pass Manager

m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Assignment Overview

Assignment 1 - Practice

m Introduction to LLVM
Install and play with it

m Learn interesting program properties

Functions: name, arguments, return types, local or
global

Compute live values using iterative dataflow analysis

Assignment 1 - Questions

m Building Control Flow Graph

m Data Flow Analysis
Available Expressions
= Apply existing analysis
New Dataflow Analysis

Questions?

m Thank you

	The LLVM Compiler Framework and Infrastructure�(Part 1)
	LLVM Compiler System
	Three primary LLVM components
	Tutorial Overview
	Running example: arg promotion
	Why is this hard?
	Tutorial Overview
	The LLVM C/C++ Compiler
	Looking into events at compile-time
	Looking into events at link-time
	Goals of the compiler design
	Tutorial Overview
	Goals of LLVM IR
	LLVM Instruction Set Overview #1
	LLVM Instruction Set Overview #2
	LLVM Type System Details
	Lowering source-level types to LLVM
	LLVM Program Structure
	Our example, compiled to LLVM
	Our example, desired transformation
	Tutorial Overview
	LLVM Coding Basics
	LLVM Pass Manager
	Services provided by PassManager
	Tutorial Overview
	LLVM tools: two flavors
	opt tool: LLVM modular optimizer
	Tutorial Overview
	Assignment 1 - Practice
	Assignment 1 - Questions
	Questions?

