
1

Lecture 5

Foundations of Data Flow Analysisy

I. Meet operator

II. Transfer functions

III. Correctness, Precision, Convergence

IV Efficiency

Carnegie Mellon

IV. Efficiency

•Reference: ALSU pp. 613-631
•Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
•Marlowe & Ryder, Properties of data flow frameworks: a unified model. Rutgers
tech report, Apr. 1988

Todd C. Mowry 15-745: Foundations of Data Flow 1

A Unified Framework

• Data flow problems are defined by
• Domain of values: V
• Meet operator (V  V  V), initial value
• A set of transfer functions (V  V)• A set of transfer functions (V  V)

• Usefulness of unified framework
• To answer questions such as

correctness, precision, convergence, speed of convergence
for a family of problems

– If meet operators and transfer functions have properties X, then
we know Y about the above.

Carnegie Mellon

• Reuse code

Todd C. Mowry15-745: Foundations of Data Flow 2

I. Meet Operator

• Properties of the meet operator
• commutative: x  y = y  x

x y

• idempotent: x  x = x
• associative: x  (y  z) = (x  y)  z
• there is a Top element T such that x  T = x

• Meet operator defines a partial ordering on values

x  y

Carnegie Mellon

• x ≤ y if and only if x  y = x

– Transitivity: if x ≤ y and y ≤ z then x ≤ z
– Antisymmetry: if x ≤ y and y ≤ x then x = y
– Reflexitivity: x ≤ x

Todd C. Mowry15-745: Foundations of Data Flow 3

Partial Order

• Example: let V = {x | such that x  { d1, d2, d3}},  = 

• Top and Bottom elements
• Top T such that: x  T = x
• Bottom  such that: x   = 

• Values and meet operator in a data flow problem define a semi-lattice:

Carnegie Mellon

p p
– there exists a T, but not necessarily a .

• x, y are ordered: x ≤ y then x  y = x
• what if x and y are not ordered?

• x  y ≤ x, x  y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x  y

Todd C. Mowry15-745: Foundations of Data Flow 4

2

One vs. All Variables/Definitions

• Lattice for each variable: e.g. intersection
1

• Lattice for three variables:

0

x101 x110 x011

x111

Carnegie Mellon
Todd C. Mowry15-745: Foundations of Data Flow 5

x100 x010 x001

x000

Descending Chain

• Definition
• The height of a lattice is the largest number of > relations that will fit

in a descending chain.
x0 > x1 > x2 >x0 > x1 > x2 > …

• Height of values in reaching definitions?

• Important property: finite descending chain
• Can an infinite lattice have a finite descending chain?
• Example: Constant Propagation/Folding

Carnegie Mellon

p p g g
• To determine if a variable is a constant

• Data values
• undef, ... -1, 0, 1, 2, ..., not-a-constant

Todd C. Mowry15-745: Foundations of Data Flow 6

II. Transfer Functions

• Basic Properties f: V  V
– Has an identity function

• There exists an f such that f (x) = x, for all x.

– Closed under composition

• if f1, f2  F, then f1  f2  F

Carnegie Mellon
Todd C. Mowry15-745: Foundations of Data Flow 7

Monotonicity

• A framework (F, V, ) is monotone if and only if
• x ≤ y implies f(x) ≤ f(y)

i “s ll l” i t t th s f ti ill l s • i.e. a “smaller or equal” input to the same function will always
give a “smaller or equal” output

• Equivalently, a framework (F, V, ) is monotone if and only if
• f(x  y) ≤ f(x)  f(y)

Carnegie Mellon

• i.e. merge input, then apply f is small than or equal to apply the
transfer function individually and then merge the result

Todd C. Mowry15-745: Foundations of Data Flow 8

3

Example

• Reaching definitions: f(x) = Gen  (x - Kill),  = 
– Definition 1:

• x1 ≤ x2, Gen  (x1 - Kill) ≤ Gen  (x2 - Kill)

– Definition 2:

• (Gen  (x1 - Kill))  (Gen  (x2 - Kill))

= (Gen  ((x1  x2) - Kill))
• Note: Monotone framework does not mean that f(x) ≤ x

• e.g., reaching definition for two definitions in program
• suppose: fx: Genx = {d1, d2} ; Killx= {}

Carnegie Mellon

• If input(second iteration) ≤ input(first iteration)
• result(second iteration) ≤ result(first iteration)

Todd C. Mowry15-745: Foundations of Data Flow 9

Distributivity

• A framework (F, V, ) is distributive if and only if

• f(x  y) = f(x)  f(y)

• i.e. merge input, then apply f is equal to apply the transfer
function individually then merge result

• Example: Constant Propagation

a = 2
b = 3

a = 3
b = 2

Carnegie Mellon
Todd C. Mowry15-745: Foundations of Data Flow 10

c = a + b

III. Data Flow Analysis

• Definition
– Let f1, ..., fm :  F, where fi is the transfer function for node i

• fp = fnk  …  fn1 , where p is a path through nodes n1, ..., nkp k 1

• fp = identify function, if p is an empty path

• Ideal data flow answer:
– For each node n:

 fpi (T), for all possibly executed paths pi reaching n.

if sqrt(y) >= 0

Carnegie Mellon

• Determining all possibly executed paths is undecidable

Todd C. Mowry15-745: Foundations of Data Flow 11

x = 0 x = 1

Meet-Over-Paths (MOP)

• Err in the conservative direction

• Meet-Over-Paths (MOP):

• For each node n:For each node n:
MOP(n) =  fpi (T), for all paths pi reaching n

• a path exists as long there is an edge in the code
• consider more paths than necessary
• MOP = Perfect-Solution  Solution-to-Unexecuted-Paths
• MOP ≤ Perfect-Solution
• Potentially more constrained, solution is small

Carnegie Mellon

y ,
• hence conservative

• It is not safe to be > Perfect-Solution!

• Desirable solution: as close to MOP as possible

Todd C. Mowry15-745: Foundations of Data Flow 12

4

Solving Data Flow Equations

• Example: Reaching definitions
• out[entry] = {}
• Values = {subsets of definitions}
• Meet operator: • Meet operator: 

• in[b] =  out[p], for all predecessors p of b
• Transfer functions: out[b] = genb  (in[b] -killb)

• Any solution satisfying equations = Fixed Point Solution (FP)

• Iterative algorithm
• initializes out[b] to {}
• if converges, then it computes Maximum Fixed Point (MFP):

• MFP is the largest of all solutions to equations

Carnegie Mellon

MFP is the largest of all solutions to equations

• Properties:
• FP ≤ MFP ≤ MOP ≤ Perfect-solution
• FP, MFP are safe
• in(b) ≤ MOP(b)

Todd C. Mowry15-745: Foundations of Data Flow 13

Partial Correctness of Algorithm

• If data flow framework is monotone, then if the algorithm
converges, IN[b] ≤ MOP[b]

• Proof: Induction on path lengths
– Define IN[entry] = OUT[entry]

and transfer function of entry = Identity function
– Base case: path of length 0

• Proper initialization of IN[entry]
– If true for path of length k, pk = (n1, ..., nk), then

true for path of length k+1: pk+1 = (n1, ..., nk+1)
• Assume: IN[nk] ≤ fnk-1(fnk-2(... fn1(IN[entry])))

Carnegie Mellon

• IN[nk+1] = OUT[nk]  ...

≤ OUT[nk]

≤ fnk (IN[nk])

≤ fnk-1(fnk-2(... fn1(IN[entry])))

Todd C. Mowry15-745: Foundations of Data Flow 14

Precision

• If data flow framework is distributive,then if the algorithm
converges, IN[b] = MOP[b]

• Monotone but not distributive: behaves as if there are additional paths • Monotone but not distributive: behaves as if there are additional paths

a = 2
b = 3

a = 3
b = 2

c = a + b

Carnegie Mellon
Todd C. Mowry15-745: Foundations of Data Flow 15

Additional Property to Guarantee Convergence

• Data flow framework (monotone) converges if there is a finite
descending chain

• For each variable IN[b] OUT[b] consider the sequence of values set to • For each variable IN[b], OUT[b], consider the sequence of values set to
each variable across iterations:

– if sequence for in[b] is monotonically decreasing
• sequence for out[b] is monotonically decreasing

• (out[b] initialized to T)

– if sequence for out[b] is monotonically decreasing
 f i [b] i t i ll d i

Carnegie Mellon

• sequence of in[b] is monotonically decreasing

Todd C. Mowry15-745: Foundations of Data Flow 16

5

IV. Speed of Convergence

• Speed of convergence depends on order of node visits

• Reverse “direction” for backward flow problems

Carnegie Mellon
Todd C. Mowry15-745: Foundations of Data Flow 17

Reverse Postorder

• Step 1: depth-first post order
main() {

count = 1;
Vi it(t)Visit(root);

}
Visit(n) {

for each successor s that has not been visited
Visit(s);

PostOrder(n) = count;
count = count+1;

}

Carnegie Mellon

• Step 2: reverse order
For each node i

rPostOrder = NumNodes - PostOrder(i)

Todd C. Mowry15-745: Foundations of Data Flow 18

Depth-First Iterative Algorithm (forward)

input: control flow graph CFG = (N, E, Entry, Exit)

/* Initialize */
out[entry] = init_value
For all nodes iFor all nodes i

out[i] = T
Change = True

/* iterate */
While Change {

Change = False
For each node i in rPostOrder {

in[i] = (out[p]), for all predecessors p of i
oldout = out[i]

Carnegie Mellon

oldout = out[i]
out[i] = fi(in[i])
if oldout  out[i]

Change = True
}

}

Todd C. Mowry15-745: Foundations of Data Flow 19

Speed of Convergence

• If cycles do not add information
• information can flow in one pass down a series of nodes of

increasing order number:
e g 1 > 4 > 5 > 7 > 2 > 4 • e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...

• passes determined by number of back edges in the path
• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic path + 2
• (2 are necessary even if there are no cycles)

• What is the depth?
– corresponds to depth of intervals for “reducible” graphs

Carnegie Mellon

p p g p
– in real programs: average of 2.75

Todd C. Mowry15-745: Foundations of Data Flow 20

6

A Check List for Data Flow Problems

• Semi-lattice
– set of values
– meet operator
– top, bottom
– finite descending chain?

• Transfer functions
– function of each basic block
– monotone
– distributive?

• Algorithm

Carnegie Mellon

• Algorithm
– initialization step (entry/exit, other nodes)
– visit order: rPostOrder
– depth of the graph

Todd C. Mowry15-745: Foundations of Data Flow 21

