
Introduction to LLVM

Part 2: Further DetailsPart 2: Further Details

Gabe Weisz

1

LLVM Overview

• C++ based compiler framework

• (Fairly) well documented API

• Structures to help you process programs

– Iterators for modules, functions, blocks, uses– Iterators for modules, functions, blocks, uses

– Functions to inspect data types and contstants

– Almost every class has a dump() method that 

prints the object to standard error

– Tip: in gdb, use p obj->dump() to see the object

2

LLVM IR

• Machine independent assembly

– Not completely – integer sizes have sizes, ir files 
tagged with architecture

• Arbitrary # of registers• Arbitrary # of registers

– Target machine specific pass does actual allocation

• Locals start with %, globals with @

• All instructions that produce values can have a 
name

– Not assignments – store, branch

3

Iterators

• Module::iterator – module == source file, 
iterates through functions in the module

• Function::iterator – iterates through basic 
blocks in the moduleblocks in the module

• BasicBlock::iterator – iterates through 
instructions in a block

• Value::use_iterator – iterates through uses

– Instructions are subclasses of values, which also 
include constants

4



More on iterators

• User::op_iterator – iterates through operands 
(Instruction is a user)

– Tip: Many instruction classes have members for particular 
operands – ie LoadInst::getPointerOperand()

• inst_iterator – goes through instructions in a function• inst_iterator – goes through instructions in a function

– for(inst_iterator i=inst_begin(f);i!=inst_end(f);i++)

– Declared in <Transforms/Utils/FunctionUtils.h>

• Most iterators automatically cast to a pointer to the 
object type (except inst_iterator)

• Be careful if modifying the list while iterating 

– Problem if using ++ after removing an item

5

Instructions

• Instruction types have specific subclasses

– LoadInst, StoreInst, CmpInst, BranchInst, etc

– Subclasses may have subclasses

• Exception: Most math operations have • Exception: Most math operations have 

BinaryOperator class with a code for operation

• Alloca – allocates memory on the stack – don’t 

use in a loop

6

Moving Instructions

• EraseFromParent() – remove from basic block, 
drop all references, deallocates

• RemoveFromParent() – just remove from basic 
block. 

Use this if you will re-attach this instruction– Use this if you will re-attach this instruction

– Does not drop references (clear the use list), so if you 
don’t reattach you’ll get a crash in the module verifier

– dropAllReferences will clean up

• MoveBefore / InsertBefore / InsertAfter are 
available

7

Types

• Not exactly what PL people think of as types

• Integer (size as a property), Float (different class for 
float, double, half), Arrays (can often get # elements), 
Structures (can get members), Pointers

– Tip: type->getPointerTo() gets a pointer to a particular type– Tip: type->getPointerTo() gets a pointer to a particular type

– Booleans are i1 (1 bit integer)

• Vector types are included, and can be added, 
subtracted, etc. Can turn into SIMD instructions when 
compiled if the target supports them.

• GEP instruction: finds a field within a complex pointer 
type (or array)

8



LLVM Passes

• For assignments, don’t use LLVM passes unless 
instructed to
– Want you to implement them to really understand 

how they work

• For projects, use whatever you want• For projects, use whatever you want

• Analysis passes – provide information

• Transform passes – modify the program

• Module Verifier – opt automatically runs this 
(unless you turn it off) to make sure that you 
haven’t broken the module

9

Module Verifier

• Opt automatically runs this unless you turn it off

• Sanity checks 

• You may need to break the module temporarily 
while working on it

• Types of binary operator parameters are the • Types of binary operator parameters are the 
same

• Terminators (branches) only at the end of basic 
blocks

• Void instructions are not named (store, branch)

• Function parameters are not void type

10

Module Verifier (more)

• Function call arguments match function 

prototype

• All instructions in a basic block (refer back to 

erasefromparent vs removefromparent)erasefromparent vs removefromparent)

• Constants in a switch are the right type

• Entry node of a function has no predecessors

• PHI nodes are valid (more later)

11

Loop Information (-loops)

• Analysis/LoopInfo.h

• Basic blocks in a loop

• Headers, pre-headers

• Exit and exiting blocks

• Back edges• Back edges

• Canonical induction variable (more later but 
either:
– Starts at 0 and counts up by 1 OR

– Starts at some number and counts down to 0

• Loop count (in many cases)

12



Scalar Evolution (-scalar-evolution)

• Tracks changes to variables through multiple loop 
nests

• Start value, step size (pseudo machine 
independent way with sizeof, indexof – can use 
with TargetData)with TargetData)

• Constants, add a value each iteration, multiply a 
value each iteration, more complicated affine 
progression across loops
– Can be used to aggregate accesses into larger blocks

– Can be used to find out if accesses go the wrong way 
for caches (accessing row major arrays columnwise)

13

Target Data (-targetdata)

• Endian-ness

• Pointer sizes

• Alignment

• Actual size in bits of variables• Actual size in bits of variables

• Actual structure layout

14

Alias Analyses

• LLVM includes a number of passes that perform 
different types of alias information

%1 = load i32* %A

store i32 5, i32* %B

%3 = add i32 %1,i32 9

store i32 %3, i32* %C

What happens if A==B==C?

• LLVM includes a number of passes that perform 
different types of alias information

• Can get information about both global and local 
variables

• Included passes take into account the fact that 
many standard C library functions don’t access 
memory

15

Notes on writing passes

• You must declare which analysis passes you 

use (and possibly what you change) in 

getAnalysisUsage

• The CommandLine library allows you to • The CommandLine library allows you to 

implement command line parameters very 

easily

– Will tell you if there are conflicts for parameter 

names at run time. Can’t tell at compile time 

because passes are loaded dynamically.

16



Memory To Register (-mem2reg)

• Removes memory operations where possible, 
puts code in SSA form

• EG: C=A+B

D=C+2

%1 = load i32* %A %1 = load i32* %A

17

%1 = load i32* %A

%2 = load i32* %B

%3 = add i32 %1,%2

store i32 %3, i32* %C

%4 = load i32* %C

%5 = add i32 %4, 2

store i32 %5, i32* %D

%1 = load i32* %A

%2 = load i32* %B

%3 = add i32 %1,%2

store i32 %3, i32* %C

%5 = add i32 %4, 2

store i32 %5, i32* %D

SSA Basics

• SSA = Single Static Assignment = each variable 
(abstract register) assigned exactly 1 time

• Phi nodes – construct to handle cases where a 
variable may have more than one value
– May be self referential (in loops)– May be self referential (in loops)

– Inside a block – select statement sometimes used

• In LLVM:
– Must be at the beginning of the block

– Must have exactly 1 entry for every predecessor

– Must have at least one entry

– May include undef values

18

Simplify CFG

• Removes unnecessary basic blocks by merging 

unconditional branches if the second block 

only has one predecessor

• Removes unreachable blocks• Removes unreachable blocks

• Removes phi nodes with only a single 

predecessor

• Many of the conditions that this pass cleans 

up are created by other optimization passes

19

Aggressive Dead Code Elimination

• Liveness based dead code elimination – assumes code is 
dead unless proven otherwise

• EG: C=A+B

D=C+2

Assume this is the only code (other than initializing A,B 
somewhere) and that Mem2Reg has been runsomewhere) and that Mem2Reg has been run

20

%1 = load i32* %A

%2 = load i32* %B

%3 = add i32 %1,%2

store i32 %3, i32* %C

%5 = add i32 %4, 2

store i32 %5, i32* %D

%1 = load i32* %A

%2 = load i32* %B

%3 = add i32 %1,%2

%5 = add i32 %4, 2

store i32 %5, i32* %D



Other useful passes

• Sparse conditional constant propagation –
aggressively searches for constants

• Correlated propagation – replaces select 
statements that depend on constants

• Loop invariant code motion – moves code out • Loop invariant code motion – moves code out 
of loops

• Dead global elimination

• Canonicalize Induction Variables – all loops 
count up from 0

• Canonicalize Loops – puts loop structure in 
standard form

21

Links

• Pass Howto: 
http://llvm.org/docs/WritingAnLLVMPass.html

• LLVM Development reference 
http://llvm.org/docs/ProgrammersManual.html

• LLVM IR: http://llvm.org/docs/LangRef.html• LLVM IR: http://llvm.org/docs/LangRef.html

• GEP: http://llvm.org/docs/GetElementPtr.html

• CommandLine library: 
http://llvm.org/docs/CommandLine.html

• Built in passes: http://llvm.org/docs/Passes.html

• Everything else: http://llvm.org/docs

22


