Introduction to LLVM
Part 2: Further Details

Gabe Weisz

LLVM Overview

* C++ based compiler framework
* (Fairly) well documented API

* Structures to help you process programs
— Iterators for modules, functions, blocks, uses
— Functions to inspect data types and contstants

— Almost every class has a dump() method that
prints the object to standard error

— Tip: in gdb, use p obj->dump() to see the object

LLVM IR

Machine independent assembly

— Not completely — integer sizes have sizes, ir files
tagged with architecture

Arbitrary # of registers

— Target machine specific pass does actual allocation
Locals start with %, globals with @

All instructions that produce values can have a
name

— Not assignments — store, branch

Ilterators

* Module::iterator — module == source file,
iterates through functions in the module

* Function::iterator — iterates through basic
blocks in the module

* BasicBlock::iterator — iterates through
instructions in a block
* Value::use_iterator — iterates through uses

— Instructions are subclasses of values, which also
include constants




More on iterators

User::op_iterator — iterates through operands
(Instruction is a user)

— Tip: Many instruction classes have members for particular
operands — ie LoadInst::getPointerOperand()

inst_iterator — goes through instructions in a function
— for(inst_iterator i=inst_begin(f);il=inst_end(f);i++)

— Declared in <Transforms/Utils/FunctionUtils.h>

Most iterators automatically cast to a pointer to the
object type (except inst_iterator)

Be careful if modifying the list while iterating

— Problem if using ++ after removing an item

Instructions

* Instruction types have specific subclasses
— Loadlnst, Storelnst, Cmplnst, Branchinst, etc
— Subclasses may have subclasses

* Exception: Most math operations have
BinaryOperator class with a code for operation

* Alloca — allocates memory on the stack — don’t
use in a loop

Moving Instructions

EraseFromParent() — remove from basic block,
drop all references, deallocates
RemoveFromParent() — just remove from basic
block.

— Use this if you will re-attach this instruction

— Does not drop references (clear the use list), so if you
don’t reattach you’ll get a crash in the module verifier

— dropAllReferences will clean up

MoveBefore / InsertBefore / InsertAfter are
available

Types

* Not exactly what PL people think of as types

* Integer (size as a property), Float (different class for
float, double, half), Arrays (can often get # elements),
Structures (can get members), Pointers

— Tip: type->getPointerTo() gets a pointer to a particular type
— Booleans are il (1 bit integer)

* Vector types are included, and can be added,
subtracted, etc. Can turn into SIMD instructions when
compiled if the target supports them.

* GEP instruction: finds a field within a complex pointer
type (or array)




LLVM Passes

For assignments, don’t use LLVM passes unless
instructed to

— Want you to implement them to really understand
how they work

For projects, use whatever you want
Analysis passes — provide information
Transform passes — modify the program

Module Verifier — opt automatically runs this
(unless you turn it off) to make sure that you
haven’t broken the module

Module Verifier

Opt automatically runs this unless you turn it off
Sanity checks

You may need to break the module temporarily
while working on it

Types of binary operator parameters are the
same

Terminators (branches) only at the end of basic
blocks

Void instructions are not named (store, branch)
Function parameters are not void type

10

Module Verifier (more)

Function call arguments match function
prototype

All instructions in a basic block (refer back to
erasefromparent vs removefromparent)

Constants in a switch are the right type
Entry node of a function has no predecessors
PHI nodes are valid (more later)

11

Loop Information (-loops)

Analysis/LooplInfo.h
Basic blocks in a loop
Headers, pre-headers
Exit and exiting blocks
Back edges

Canonical induction variable (more later but
either:

— Starts at 0 and counts up by 1 OR
— Starts at some number and counts down to O

Loop count (in many cases)

12




Scalar Evolution (-scalar-evolution)

* Tracks changes to variables through multiple loop
nests

* Start value, step size (pseudo machine
independent way with sizeof, indexof — can use
with TargetData)

* Constants, add a value each iteration, multiply a
value each iteration, more complicated affine
progression across loops
— Can be used to aggregate accesses into larger blocks

— Can be used to find out if accesses go the wrong way
for caches (accessing row major arrays columnwise)

13

Target Data (-targetdata)

Endian-ness

Pointer sizes

Alignment

Actual size in bits of variables
Actual structure layout

14

Alias Analyses

%1 =load i32* %A

store i32 5, i32* %B € —————— What happens if A==B==C?
%3 =add i32 %1,i329

store i32 %3, i32* %C

* LLVM includes a number of passes that perform
different types of alias information

* Can get information about both global and local
variables

* Included passes take into account the fact that
many standard C library functions don’t access
memory

15

Notes on writing passes

You must declare which analysis passes you
use (and possibly what you change) in
getAnalysisUsage

The CommandLine library allows you to
implement command line parameters very
easily

— Will tell you if there are conflicts for parameter
names at run time. Can’t tell at compile time
because passes are loaded dynamically.

16




Memory To Register (-mem2reg)

* Removes memory operations where possible,
puts code in SSA form

* EG:C=A+B

D=C+2
%1 =load i32* %A %1 =load i32* %A
%2 =load i32* %B %2 =load i32* %B
%3 =add i32 %1,%2 %3 =add i32 %1,%2
store i32 %3, i32* %C store i32 %3, i32* %C
%4 =load i32* %C %5 =add i32 %4, 2

%5 =add i32 %4, 2 store i32 %5, i32* %D

store i32 %5, i32* %D

17

SSA Basics

* SSA = Single Static Assignment = each variable
(abstract register) assigned exactly 1 time
* Phi nodes — construct to handle cases where a
variable may have more than one value
— May be self referential (in loops)
— Inside a block — select statement sometimes used
* |nLLVM:
— Must be at the beginning of the block
— Must have exactly 1 entry for every predecessor
— Must have at least one entry
— May include undef values

18

Simplify CFG

* Removes unnecessary basic blocks by merging
unconditional branches if the second block
only has one predecessor

* Removes unreachable blocks

* Removes phi nodes with only a single
predecessor

* Many of the conditions that this pass cleans
up are created by other optimization passes

19

Aggressive Dead Code Elimination

* Liveness based dead code elimination — assumes code is
dead unless proven otherwise

* EG: C=A+B
D=C+2
Assume this is the only code (other than initializing A,B
somewhere) and that Mem2Reg has been run

%1 = load i32* %A %1 = load i32* %A
%2 =load i32* %B %2 = load i32* %B
%3 = add 132 %1,%2 ‘ %3 = add 32 %1.%2
store i32 %3, i32* %C %5 = add 132 %4, 2

o) - 1 o)
%5 = add i32 %4, 2 store 32 %5, i32* %D
store i32 %5, i32* %D

20




Other useful passes

Sparse conditional constant propagation —
aggressively searches for constants

Correlated propagation — replaces select
statements that depend on constants

Loop invariant code motion — moves code out
of loops

Dead global elimination

Canonicalize Induction Variables — all loops
count up from 0

Canonicalize Loops — puts loop structure in
standard form

21

Links

Pass Howto:
http://llvm.org/docs/WritingAnLLVMPass.html

LLVM Development reference
http://llvm.org/docs/ProgrammersManual.html

LLVM IR: http://llvm.org/docs/LangRef.html
GEP: http://llvm.org/docs/GetElementPtr.html

CommandLine library:
http://llvm.org/docs/CommandLine.html

Built in passes: http://llvm.org/docs/Passes.html
Everything else: http://llvm.org/docs

22




