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Loop Invariant Computation Loop Invariant Computation 

and Code Motion

I. Finding loops

II. Loop-invariant computation

III. Algorithm for code motiong
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What is a Loop?

• Goals: 
– Define a loop in graph-theoretic terms (control flow graph)
– Not sensitive to input syntax
– A uniform treatment for all loops: DO, while, goto’s

• Not every cycle is a “loop” from an optimization perspectivey y p p p p
start
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• Intuitive properties of a loop
– single entry point
– edges must form at least a cycle
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edges must form at least a cycle
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Formal Definitions

• Dominators
– Node d dominates node n in a graph (d dom n) if every path from 

th  st t d  t  s th h dthe start node to n goes through d
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– Dominators can be organized as a tree

• a ->b in the dominator tree iff a immediately dominates b 
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Natural Loops

• Definitions
– Single entry-point: header

 h d  d  ll d   h  l• a header dominates all nodes in the loop

– A back edge is an arc whose head dominates its tail (tail -> head)
• a back edge must be a part of at least one loopa back edge must be a part of at least one loop

– The natural loop of a back edge is
the smallest set of nodes that

l d  h  h d d l f h  b k d  d includes the head and tail of the back edge, and 
has no predecessors outside the set, 
except for the predecessors of the header.

Carnegie Mellon
Todd C. Mowry15-745: Loop Invariance 4



Algorithm to Find Natural Loops

1. Find the dominator relations in a flow graph

2. Identify the back edges

3. Find the natural loop associated with the back edge
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1. Finding Dominators

• Definition
• Node d dominates node n in a graph (d dom n) 

if every path from the start node to n goes through df y p f m g g
• Formulated as MOP problem:

• node d lies on all possible paths reaching node n  d dom n
– Direction:
– Values:
– Meet operator:
– Top:

Bottom:– Bottom:
– Boundary condition: start/entry node = 
– Initialization for internal nodes
– Finite descending chain?g
– Transfer function:

• Speed: 
– With reverse postorder, most flow graphs 

(reducible flow graphs) converge in 1 pass
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(reducible flow graphs) converge in 1 pass
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2. Finding Back Edges

• Depth-first spanning tree
• Edges traversed in a depth-first search of the flow graph form a

depth first spanning treedepth-first spanning tree
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• Categorizing edges in graph

• Advancing edges: from ancestor to proper descendant
• Cross edges: from right to left

R t ti d  f  d d t t  t  ( t il  )
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• Retreating edges: from descendant to ancestor (not necessarily proper)

Todd C. Mowry15-745: Loop Invariance 7



Back Edges

• Definition
– Back edge: t->h, h dominates t

• Relationships between graph edges and back edges

• AlgorithmAlgorithm

– Perform a depth first search
– For each retreating edge t->h, check if h is in t’s dominator list

• Most programs (all structured code, and most GOTO programs) have  
reducible flow graphs
– retreating edges = back edgesretreating edges  back edges
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3. Constructing Natural Loops

• The natural loop of a back edge is the smallest set of nodes that
includes the head and tail of the back edge, and has no predecessors 
outside the set  except for the predecessors of the headeroutside the set, except for the predecessors of the header.

• Algorithm
• delete h from the flow graph
• find those nodes that can reach tfind those nodes that can reach t

(those nodes plus h form the natural loop of t -> h) 
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Inner Loops

• If two loops do not have the same header:
– they are either disjoint, or
– one is entirely contained (nested within) the other

• inner loop: one that contains no other loop.

• If two loops share the same header:• If two loops share the same header:
– Hard to tell which is the inner loop
– Combine as one 

a

b c
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Preheader

• Optimizations often require code to be executed once before the 
loop
C t   h d b i  bl k f   l• Create a preheader basic block for every loop

header header

preheader

rest of loop rest of loop
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Finding Loops: Summary

• Define loops in graph theoretic terms

• Definitions and algorithms for: g
– Dominators
– Back edges
– Natural loopsNatural loops
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II. Loop-Invariant Computation and Code Motion

• A loop-invariant computation:
– a computation whose value does not change as long as control stays 

ithi  th  lwithin the loop
• Code motion: 

– to move a statement within a loop to the preheader of the loop

header

A = B + C
F = A + 2

E = 3

outside loop
D = A + 1

outside loop
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Algorithm

• Observations
– Loop invariant

d   d f d d  l    h l• operands are defined outside loop or invariant themselves
– Code motion 

• not all loop invariant instructions can be moved to preheader

• Algorithm
– Find invariant expressions

Conditions for code motion – Conditions for code motion 
– Code transformation
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Detecting Loop Invariant Computation

• Compute reaching definitions

M k INVARIANT if • Mark INVARIANT if 
all the definitions of B and C that reach a statement A=B+C
are outside the loop
– constant B  C?constant B, C?

• Repeat: Mark INVARIANT if 
– all reaching definitions of B are outside the loop, or g p,
– there is exactly one reaching definition for B, and it is from a loop-

invariant statement inside the loop
– similarly for C

until no changes to set of loop-invariant statements occur.
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Example

A = B + C

E = 2 E = 3

A = B + C

D = A + 1
F = E + 2
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III. Conditions for Code Motion

• Correctness: Movement does not change semantics of program

• Performance: Code is not slowed down

...

A = B + C

...
A = B + C

... ...

• Basic idea: defines once and for all
• control flow: 

• other definitions: 

• other uses: 
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Code Motion Algorithm

Given: a set of nodes in a loop
• Compute reaching definitions
• Compute loop invariant computation
• Compute dominators
• Find the exits of the loop (i.e. nodes with successor outside loop)
• Candidate statement for code motion:

– loop invariant
– in blocks that dominate all the exits of the loop
– assign to variable not assigned to elsewhere in the loop
– in blocks that dominate all blocks in the loop that use the variable 

assigned
P f   d th fi t h f th  bl k• Perform a depth-first search of the blocks
– Move candidate to preheader if all the invariant operations it 

depends upon have been moved
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Examples

header

A = B + C E = 3

D = A + 1 outside loop

C

D = A + 1 outside loop

E = 2 E = 3

A = B + C

D = A + 1
F = E + 2
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More Aggressive Optimizations

• Gamble on: most loops get executed 
– Can we relax constraint of dominating all exits?

A = B + CA = B + C
E = A + D

D = …
exit

• Landing pads
While p do s    if p {

preheader
repeat

s
until not p;
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}
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Summary

• Precise definition and algorithm for loop invariant computation

• Precise algorithm for code motion

• Use of reaching definitions and dominators in optimizationsg p
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